68. A Remark on B(P, a)-refinability

By R. H. PRICE^{*)} and J. C. SMITH^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1989)

Introduction. Recently a number of general topological properties have been introduced in order to obtain covering characterizations of generalized normal and paracompact spaces. In particular see [1, 2, 7, 10] for such characterizations of subparacompact, θ -refinable, collectionwise normal and collectionwise subnormal spaces. In this paper we consider the general property of $B(P, \alpha)$ -refinable and show how this notion is used to generalize known results for normal and collectionwise normal spaces.

The union of any family \mathcal{U} will be denoted by \mathcal{U}^* . The properties P considered in this paper will be discrete (D), locally finite (LF) and closed (C). Countable ordinals will be denoted by λ and α will be any ordinal.

Definition 1. A space X is $B(P, \alpha)$ -refinable provided every open cover U of X has a refinement $\mathcal{E} = \bigcup \{\mathcal{E}_{\beta} : \beta < \alpha\}$ which satisfies i) $\{\bigcup \mathcal{E}_{\beta} : \beta < \alpha\}$ partitions X, ii) for every $\beta < \alpha$, \mathcal{E}_{β} is a relatively P collection of closed subsets of the subspace $X - \bigcup \{\bigcup \mathcal{E}_{\mu} : \mu < \beta\}$, and iii) for every $\beta < \alpha$, $\bigcup \{\bigcup \mathcal{E}_{\mu} : \mu < \beta\}$ is a closed set. For the case P = C, we require \mathcal{E}_{β} to be a one-to-one partial refinement of U for each $\beta < \alpha$.

The collection \mathcal{E} is often called a $B(P, \alpha)$ -refinement of \mathcal{U} .

In [6,7] the author has used the property of weakly $\bar{\theta}$ -refinable to obtain several open cover characterizations for normal and collectionwise normal spaces. The following are modifications of this idea.

Definition 2. An open cover $\mathcal{G} = \bigcup \{\mathcal{G}_n : n \in N\}$ of a space X is a (k^-) bded-weak $\overline{\theta}$ -cover if (i) the collection $\{\mathcal{G}_n^* : n \in N\}$ is point finite and (ii) for each n, there exist an integer k(n) ($\leq k$) such that $X = \{x : 0 < ord(x, \mathcal{G}_n) \le k(n), n \in N\}$. Spaces for which each open cover has a refinement with the above property are called (k^-) -bded-weak $\overline{\theta}$ -refinable.

Remark. A k-bded weak $\bar{\theta}$ -cover is equivalent to a boundly weak $\bar{\theta}$ -cover, as defined in [10].

Main results.

Theorem 1. A space X is bded-weak $\bar{\theta}$ -refinable iff X is 1-bded weak $\bar{\theta}$ -refinable.

Proof. The sufficiency is clear. Let $\mathcal{G} = \{\mathcal{G}_n : n \in N\}$ be a bded-weak $\bar{\theta}$ -cover of X with k(n) defined as above.

For each $x \in X$ and every $n, j \in N$, define $W(n, x) = \cap \{G \in \mathcal{G}_n : x \in G\}$, and $\mathcal{W}(n, j) = \{W(n, x) : ord(x, \mathcal{G}_n) = j\}$ so that if $ord(x, \mathcal{G}_n) = j$, then $ord(x, \mathcal{W}(n, j)) = 1$. Define $\mathcal{W} = \cup \{\mathcal{W}(n, j) : 0 < j \le k(n), n \in N\}$. It should

^{*)} Department of Mathematics, Judson College, Marion, Alabama 36756, USA.

^{**)} Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061 USA.