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1. Introduction. This is a research announcement concerning founda-
tions of conformally flat manifolds. We assume throughout that M be a
closed oriented smooth n-dimensional manifold and any map or transforma-
tion which appears in the sequal is orientation preserving.

A Riemannian manifold (M, g) is called conformally fiat i or any x e M,
there exist a neighbourhood U of x and a smooth embedding " U--+S such
that *gz=p. g, where gz is the spherical metric of S and / is a positive
valued continuous function on U.

Recall Liouville’s theorem" any (locally defined) conformal map of S
is the restriction of a Moebius transformation, provided n._ 3. Thus the
above is unique up to the composition with a Moebius transformation, if
n_ 3. This quickly yields a system of local charts of M modelled on S
with transition unctions Moebius transformations. Further, by means of
analytic continuation, we get a developing map D" M--S and a holonomy
homomorphism h" Zl(M)--Mob+(Sn), where M is the universa.1 covering of
M and Mob/(Sn) is the group of all the orientation preserving Moebius
transformations of S. They satisfy D(yx)--h()D(x), where e zl(M) and
x e M. The image of h is called the holonomy group and denoted by F.

In dimension 2, by a conformally flat structure we mean the structure
given by the pair of a developing map and a holonomy homomorphism, i.e.
the geometric structure known as projective structure.

Examples o conformally flat structures are usually constructed as fol-
lows. Let IMob+(Sn) be a discrete subgroup which acts freely and prop-
erly discontinuously on a F-invariant domain U o S. Then M=U/F
carries nturally a conformally flat structure. However examples are
known of conformally flat manifolds whose developing maps are not cover-
ing maps. ([3], [6], [7], [9])

In 2, given a conformally flat manifold M, we define its limit set, a
subset o S, and give criterions or the developing map to be a covering
map. In 3, we describe conditions or M to have a finite limit set. 4 is
devoted to the study of the case where the limit set is a Cantor set.

Details including ull proofs will appear elsewhere.
2. Limit set. We define the limit set of M in four different ways and

show that they 11 coincide. Recall that Moebius transformations on S are
extended in a canonical way to transformgtions on Dn+l and that they pre-


