63. On the Unitarizability of Principal Series Representations of p-adic Chevalley Groups

By Hiroyuki Yoshida Department of Mathematics, Kyoto University

(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1989)

- 1. In this note, we shall determine the unitarizability of unramified principal series representations of p-adic Chevalley groups of classical types. Detailed proofs of all the results stated here are given in [7].
- 2. Let k be a non-archimedean local field, $\mathfrak D$ be the maximal compact subring and $\mathfrak w$ be a prime element of k. Set $q=|\mathfrak D/\mathfrak w\mathfrak D|$. The following theorem is our main tool in this research.

Theorem 1. Let N be the group of k-rational points of a unipotent algebraic group defined over k. Let T be a distribution of positive type on N. Then, for any $\alpha \in C_c^{\infty}(N)$, the convolution $T * \alpha$ is a bounded function on N.

3. Let G be a universal Chevalley group defined over k in the sense of Steinberg [6]. Let T be a maximal k-split torus and B be a Borel subgroup defined over k which contains T. Let N be the unipotent radical of B. Let G, T, B and N stand for the groups of k-rational points of G, T, B and N respectively. Let Σ be the root system and $\Delta = \{\alpha_1, \alpha_2, \cdots, \alpha_\ell\}$ be the set of simple roots determined by (G, B, T), where ℓ is the rank of G. Let Σ^+ be the set of positive roots and W be the Weyl group. For $w \in W$, set $\Psi_w^+ = \{\alpha \in \Sigma^+ \mid w\alpha < 0\}$. We have B = TN = NT and T (resp. N) is generated by $h_{\alpha}(t)$ (resp. $x_{\alpha}(t)$) for $\alpha \in \Sigma^+$, $t \in k^\times$ (resp. $t \in k$) in the notation of [6]. If $\alpha \in \Sigma$, let $\check{\alpha} \in \mathrm{Hom}(G_m, T)$ be the co-root of α and set $a_{\alpha} = \check{\alpha}(\varpi) = h_{\alpha}(\varpi) \in T$. For α , $\beta \in \Sigma$, we set $\{\alpha, \beta\} = \langle \alpha, \check{\beta} \rangle_1$ with the canonical pairing $\langle \cdot, \cdot \rangle_1$ of a root with a co-root. Let δ_B denote the modular function of B. For a quasicharacter χ of T, let $PS(\chi)$ denote the space of all locally constant functions φ on G which satisfy

 $\varphi(tng) = \delta_B(t)^{1/2} \chi(t) \varphi(g)$ for any $t \in T$, $n \in N$, $g \in G$.

Let $\pi(\mathbf{X})$ denote the admissible representation of G realized on $PS(\mathbf{X})$ by right translations.

Let K be the subgroup of G generated by $x_{\alpha}(t)$, $\alpha \in \Sigma$, $t \in \mathbb{D}$. Then K is a maximal compact subgroup of G and we have the Iwasawa decomposition G=BK. We call χ unramified if χ is trivial on $T \cap K$, the group generated by $h_{\alpha}(t)$, $\alpha \in \Sigma^+$, $t \in \mathbb{D}^\times$. Let X be the group of all unramified quasi-characters of T. The map $\chi \to (\chi(a_{\alpha_1}), \chi(a_{\alpha_2}), \cdots, \chi(a_{\alpha_\ell}))$ defines an isomorphism $X \cong (C^\times)^\ell$ and we consider X as a complex Lie group. We call χ regular if $w\chi \neq \chi$ for any $w \in W$, $w \neq 1$. Let X^r (resp. X^i) denote the set of all $\chi \in X$ which are regular (resp. regular and $\pi(\chi)$ is irreducible). Let