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1. In this note, we shall determine the unitarizability of unramified
principal series representations of p-adic Chevalley groups of classical types.
Detailed proofs of all the results stated here are given in [7].

2. Let k be a non-archimedean local field, be the maximal compact
subring and be a prime element of k. Set q=l/vl. The following
theorem is our main tool in this research.

Theorem 1. Let N be the group of k-rational points of a unipotent
algebraic group defined over k. Let T be a distribution of positive type on
N. Then, for any e C(N), the convolution T.a is a bounded function
on N.

3. Let (7 be a universal Chevalley group defined over k in the sense of
Steinberg [6]. Let T be a maximal k-split torus and B be a Borel subgroup
defined over k which contains T. Let N be the unipotent radical of B. Let
G, T, B and N stand for the groups of k-rational points of G, T, B and N
respectively. Let 27 be the root system and A-{a1, a,..., a) be the set of
simple roots determined by (G, B, T), where is the rank of (7. Let 27 be
the set of positive roots and W be the Weyl group. For w e W, set +-
{a e v+ wa0}. We have B=TN=NT and T (resp. N) is generated by
h.(t) (resp. x.(t)) for a e X +, t e k (resp. t e k) in the notation of [6]. If
a e 27, let e Hom (G, T) be the co-root of and set a.=(w)= h.(w) e T.
For a, fl e 27, we set (a, }= (a, f } with the canonical pairing (, } of a
root with a co-root. Let/t. denote the modular function of B. For a quasi-
character Z of T, let PS(Z) denote the space of all locally constant functions
on G which satisfy

(tng)=(t)l/2Z(t)(g) for any t e T, n e N, g e G.
Let (Z) denote the admissible representation of G realized on PS(Z) by right
translations.

Let K be the subgroup of G generated by x.(t), a e X, t e . Then K
is a maximal compact subgroup of G and we have the Iwasawa decom-
position G-BK. We call Z unramified if Z is trivial on T K, the group
generated by h.(t), e X +, t e . Let X be the group of gll unramified
quasi-characters of T. The map Z--(Z(a.), Z(a.), ..., Z(a.)) defines an iso-
morphism X-(C) and we consider X as a complex Lie group. We call Z
regular if wZ =/=Z for any w e W, w =/= 1. Let X (resp. X) denote the set of
all Z e X which are regular (resp. regular and z(z) is irreducible). Let


