60. On Affine Surfaces whose Cubic Forms are Parallel Relative to the Affine Metric ${ }^{\text {¹ }}$

By Martin A. Magid*) and Katsumi Nomizu**)
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1989)

Let M^{n} be a nondegenerate affine hypersurface in affine space R^{n+1} and denote by ∇, h and \hat{V} the induced connection, the affine metric, and the LeviCivita connection for h, respectively. (We follow the terminology of [4].) Let $C=\nabla h$ be the cubic form.

It is a classical theorem that if $C=0$, then M^{n} is a quadratic hypersurface. In [5], it is shown that for $n=2$ the condition $\nabla C=0, C \neq 0$ characterizes, up to an equiaffine congruence, a Cayley surface, namely, the graph of the cubic polynomial $z=x y-y^{3} / 3$. For an arbitrary dimension, [1] has shown that the tensor ∇C is totally symmetric (i.e. symmetric in all its indices) if and only if $\hat{V} C$ is totally symmetric, and this symmetry condition implies that M^{n} is an affine hypersphere. It is also shown that the condition $\nabla C=0, C \neq 0$ implies that M^{n} is an improper affine hypersphere such that h is hyperbolic metric and the Pick invariant J is 0 . As for the case $n=2$, affine spheres M^{2} whose affine metric h is flat have been completely determined in [3], although the case where h is elliptic was already done in [2].

In this note, we study affine surfaces with the property $\hat{\nabla} C=0, C \neq 0$, and prove the following classification.

Theorem. If a nondegenerate affine surface in \boldsymbol{R}^{3} satisfies $\hat{\Gamma} C=0$, $C \neq 0$, then it is equiaffinely congruent to a piece of one of the following surfaces:

1) the graph of $z=1 / x y$ (h : elliptic);
2) the graph of $z=1 /\left(x^{2}+y^{2}\right)(h$: hyperbolic and $J \neq 0)$;
3) Cayley surface (h : hyperbolic and $J=0$).

The proof is given along the following lines. First, from the results quoted from [1] we see that the surface is an affine sphere. Next, we show that the assumption of the theorem implies that the connection \hat{V} is flat by using the argument similar to that in [5]. Now the result in [3] leads to our classification by using a concrete procedure to show that the graph of $z=x y+\varphi(y)$, where φ is an arbitrary cubic polynomial, is equiaffinely congruent to the Cayley surface.

Proof of the theorem. Step 1 . We show that $\hat{\Gamma} C=0$ implies that M^{2} is an affine sphere. Indeed, from [1] we know that ∇C is totally symmetric, and this implies our assertion.

[^0]
[^0]: †) Partially supported by NSF Grant DMS 8802664.
 *) Department of Mathematics, Wellesley College, Wellesley, MA 02181, USA.
 **) Department of Mathematics, Brown University, Providence, RI 02912, USA.

