60. On Affine Surfaces whose Cubic Forms are Parallel Relative to the Affine Metric¹⁾

By Martin A. MAGID^{*)} and Katsumi NOMIZU^{**)}

(Communicated by Kôsaku YOSIDA, M. J. A., Sept. 12, 1989)

Let M^n be a nondegenerate affine hypersurface in affine space \mathbb{R}^{n+1} and denote by V, h and \hat{V} the induced connection, the affine metric, and the Levi-Civita connection for h, respectively. (We follow the terminology of [4].) Let C = Vh be the cubic form.

It is a classical theorem that if C=0, then M^n is a quadratic hypersurface. In [5], it is shown that for n=2 the condition $\nabla C=0$, $C\neq 0$ characterizes, up to an equiaffine congruence, a Cayley surface, namely, the graph of the cubic polynomial $z=xy-y^3/3$. For an arbitrary dimension, [1] has shown that the tensor ∇C is totally symmetric (i.e. symmetric in all its indices) if and only if $\hat{\nabla}C$ is totally symmetric, and this symmetry condition implies that M^n is an affine hypersphere. It is also shown that the condition $\nabla C=0$, $C\neq 0$ implies that M^n is an improper affine hypersphere such that h is hyperbolic metric and the Pick invariant J is 0. As for the case n=2, affine spheres M^2 whose affine metric h is flat have been completely determined in [3], although the case where h is elliptic was already done in [2].

In this note, we study affine surfaces with the property $\hat{V}C=0$, $C\neq 0$, and prove the following classification.

Theorem. If a nondegenerate affine surface in \mathbb{R}^3 satisfies $\hat{V}C=0$, $C\neq 0$, then it is equiaffinely congruent to a piece of one of the following surfaces:

- 1) the graph of z=1/xy (h: elliptic);
- 2) the graph of $z=1/(x^2+y^2)$ (h: hyperbolic and $J\neq 0$);
- 3) Cayley surface (h: hyperbolic and J=0).

The proof is given along the following lines. First, from the results quoted from [1] we see that the surface is an affine sphere. Next, we show that the assumption of the theorem implies that the connection \hat{V} is flat by using the argument similar to that in [5]. Now the result in [3] leads to our classification by using a concrete procedure to show that the graph of $z=xy+\varphi(y)$, where φ is an arbitrary cubic polynomial, is equiaffinely congruent to the Cayley surface.

Proof of the theorem. Step 1. We show that $\hat{V}C=0$ implies that M^2 is an affine sphere. Indeed, from [1] we know that VC is totally symmetric, and this implies our assertion.

^{†)} Partially supported by NSF Grant DMS 8802664.

^{*)} Department of Mathematics, Wellesley College, Wellesley, MA 02181, USA.

^{**)} Department of Mathematics, Brown University, Providence, RI 02912, USA.