58. Uniqueness and Existence of Viscosity Solutions of Generalized Mean Curvature Flow Equations

By Yun-Gang CHEN,*) Yoshikazu GIGA,**) and Shun'ichi GOTO**)

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1989)

1. Introduction. We construct unique global continuous viscosity solutions of the initial value problem in \mathbb{R}^n for a class of degenerate parabolic equations that we shall call *geometric*. A typical example is

$$(1) \qquad u_t - |\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) - \nu |\nabla u| = 0 \qquad \left(u_t = \frac{\partial u}{\partial t}, \ \nabla u = \operatorname{grad} u, \ \nu \in \mathbf{R}\right).$$

Our method is based on the comparison principle of viscosity solutions developed recently by Jensen [8] and Ishii [6]. However, as is observed from (1), our equation is singular at $\nabla u = 0$ so we are forced to extend their theory to our situation.

The equation (1) has a geometric significance because γ -level surface $\Gamma(t)$ of u moves by its mean curvature when $\nu = 0$ provided that Γu does not vanish on $\Gamma(t)$. Such a motion of surfaces has been studied by many authors [1-5]. However, so far whole *unique* evolution families of surfaces were only constructed under geometric restrictions on initial surfaces such as convexity [3,5] except n=2 [1,4]. When n=2, Grayson [4] has shown that any embedded curve moved by its curvature never becomes singular unless it shrinks to a point. However when $n \ge 3$ even embedded surfaces may become singular before it shrinks to a point.

Our goal is to construct whole evolution family of surfaces even after the time when there appear singularities. This program is carried out by Angenent [1] when n=2. Contrary to [1] we avoid parametrization and rather understand surfaces as level sets of viscosity solutions of (1). Let D(t) denote the open set of $x \in \mathbb{R}^n$ such that $u(x, t) > \gamma$. When the equation is geometric, it turns out that the family $(\Gamma(t), D(t))$ $(t\geq 0)$ is uniquely determined by $(\Gamma(0), D(0))$ and is independent of u and γ . By unique existence of viscosity solution of (1) we have a unique family of $(\Gamma(t), D(t))$ for all $t\geq 0$ provided D(0) is bounded open and that $\Gamma(0) (\subset \mathbb{R}^n \setminus D(0))$ is compact. As is expected, we conclude that $(\Gamma(t), D(t))$ becomes empty in a finite time provided $\nu \leq 0$. This extends a result of Huisken [5] where he proved that $\Gamma(t)$ disappears in a finite time provided $\Gamma(0)$ is a uniformly convex C^2 hypersurface.

In this note we state our main results almost without proofs; the details will be published elsewhere.

^{*)} On leave from Nankai Institute of Mathematics, Tianjin, China.

^{**)} Department of Mathematics, Hokkaido University.