54. A Discrepancy Problem with Applications to Linear Recurrences. II

By Péter Kiss*),t) and Robert F. Tichy**)
(Communicated by Shokichi Iyanaga, M. J. A., June 13, 1989)

This is continued from [0].
The following result gives an estimation for the discrepancy of a special s-dimensional sequence $\left(x_{n}\right), n=1,2, \cdots$ Let us recall the definition of the discrepancy $D_{N}\left(x_{n}\right)$. Generally speaking the discrepancy is a measure for the distribution behaviour of $\left(x_{n}\right)$ modulo 1. More precisely put

$$
A_{N}\left(x_{n}, I\right)=\operatorname{card}\left\{n \leqq N:\left\{x_{n}\right\} \in I\right\}
$$

for the number indices n such that the (componentwise) fractional part of x_{n} is contained in a given s-dimensional interval I. Then

$$
D_{N}\left(x_{n}\right):=\sup _{I}\left|\frac{A_{N}\left(x_{n}, I\right)}{N}-|I|\right|,
$$

where the supremum is taken over all s-dimensional subintervals I of $[0,1]^{s}$ with volume $|I|$. Thus, if $|I| \geqq 2 D_{N}$, there exists an integer n with $1 \leqq n \leqq N$, such that $\left\{x_{n}\right\} \in I$. If $D_{N}\left(x_{n}\right)$ tends to zero (for $N \rightarrow \infty$) then (x_{n}) is called uniformly distributed modulo 1 (cf. [6]).

Theorem 1. Let y_{1}, \cdots, y_{s} be a multiplicatively independent system of unimodular complex algebraic numbers and let θ_{k} be real numbers defined by

$$
y_{k}=e^{2 \pi i \theta_{k}} \quad(k=1, \cdots, s) .
$$

Set $\theta=\left(\theta_{1}, \cdots, \theta_{s}\right)$ and let $\omega=\left(\omega_{1}, \cdots, \omega_{s}\right)$ be an arbitrary s-tuple of real numbers. Then the discrepancy of the s-dimensional sequence $\left(x_{n}\right)=$ $(n \theta+\omega)$ satisfies the estimate

$$
D_{N}\left(x_{n}\right) \leqq N^{-\delta}
$$

for any sufficiently large N, where $\delta(>0)$ depends only on the system y_{1}, \cdots, y_{s}.

Proof. Let m be an arbitrary positive integer. Then by the inequality of Erdös-Turán-Koksma (cf. [6], p. 116) we have

$$
\begin{equation*}
D_{N}\left(x_{n}\right) \leqq c_{s}\left(\frac{1}{m}+\sum_{0<\|n\| \leqq m} \frac{1}{r(h)}\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i\left\langle h, x_{n}\right\rangle}\right|\right), \tag{9}
\end{equation*}
$$

where c_{s} is a constant depending only on the dimension s, the first sum runs through all integral lattice points $h=\left(h_{i}, \cdots, h_{s}\right) \neq(0, \cdots, 0)$ with

[^0]
[^0]: t) Research partially supported by Hungarian National Foundation for Scientific Research Grant no. 273.
 *) Teachers' Training College, Department of Mathematics, Eger, Hungary.
 **) Department of Technical Mathematics, Technical University of Vienna, Vienna, Austria.

