54. A Discrepancy Problem with Applications to Linear Recurrences. II

By Péter KISS^{*),†)} and Robert F. TICHY^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., June 13, 1989)

This is continued from [0].

The following result gives an estimation for the discrepancy of a special s-dimensional sequence (x_n) , $n=1, 2, \cdots$. Let us recall the definition of the *discrepancy* $D_N(x_n)$. Generally speaking the discrepancy is a measure for the distribution behaviour of (x_n) modulo 1. More precisely put

 $A_N(x_n, I) = \operatorname{card} \{n \leq N : \{x_n\} \in I\}$

for the number indices n such that the (componentwise) fractional part of x_n is contained in a given s-dimensional interval I. Then

$$D_N(x_n) := \sup_I \left| \frac{A_N(x_n, I)}{N} - |I| \right|,$$

where the supremum is taken over all s-dimensional subintervals I of $[0,1]^s$ with volume |I|. Thus, if $|I| \ge 2D_N$, there exists an integer n with $1 \le n \le N$, such that $\{x_n\} \in I$. If $D_N(x_n)$ tends to zero (for $N \to \infty$) then (x_n) is called *uniformly distributed* modulo 1 (cf. [6]).

Theorem 1. Let y_1, \dots, y_s be a multiplicatively independent system of unimodular complex algebraic numbers and let θ_k be real numbers defined by

$$y_k = e^{2\pi i\theta_k} \quad (k = 1, \cdots, s).$$

Set $\theta = (\theta_1, \dots, \theta_s)$ and let $\omega = (\omega_1, \dots, \omega_s)$ be an arbitrary s-tuple of real numbers. Then the discrepancy of the s-dimensional sequence $(x_n) = (n\theta + \omega)$ satisfies the estimate

$$D_N(x_n) \leq N^{-1}$$

for any sufficiently large N, where $\delta(>0)$ depends only on the system y_1, \dots, y_s .

Proof. Let m be an arbitrary positive integer. Then by the inequality of Erdös-Turán-Koksma (cf. [6], p. 116) we have

$$(9) D_N(x_n) \leq c_s \left(\frac{1}{m} + \sum_{0 < \|h\| \leq m} \frac{1}{r(h)} \left| \frac{1}{N} \sum_{n=1}^N e^{2\pi i \langle h, x_n \rangle} \right| \right),$$

where c_s is a constant depending only on the dimension s, the first sum runs through all integral lattice points $h=(h_i, \dots, h_s)\neq (0, \dots, 0)$ with

^{†)} Research partially supported by Hungarian National Foundation for Scientific Research Grant no. 273.

^{*)} Teachers' Training College, Department of Mathematics, Eger, Hungary.

^{**)} Department of Technical Mathematics, Technical University of Vienna, Vienna, Austria.