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Introduction. We are concerned with the Lie group G of C-loops
in a connected, simply connected complex simple Lie group G, its Lie
algebra , and a central extension of . The Lie algebra of algebraic
loops in the Lie algebra of G has a universal central extension called
an affine Lie algebra, and the corresponding 2-cocycle Z(., .) was ex-
plicitly given in [1]. We extend the 2-cocycle of after [2], and get a
central extension of . is one of the simplest infinite-dimensional
Kac-Moody algebras. The corresponding Kac-Moody group is a 1-
dimensional central extension of the group of algebraic loops in G
(cf. [1], [7], [4], and [5]).

Since the kernel of the adjoint action Ad of on , is precisely
the center C of , O/C acts on through Ad, and the set of invariants
in under this action is just the center of . The action on induces
the adjoint action of G on . The main purpose of this article is to
construct a completed version of this fact for the pair of the infinite-
dimensional Lie group G and the Lie algebra .

1. The coefficient extension from C to Zk--Ck(S1)o Let L "--C(S),
the algebra of C-functions on S. This becomes a Banach algebr if
we introduce a norm I. I as

a I." sup 1(5a) (e2" C---it) for a e L,
rR,j=O,...,k

where 3 is a differential operator on Sx, defined by

(a) (e2r)" 1 d a (e2’ ---i).
2z/- 1 dr

Let n be a positive integer and i=0, 1,2,..., n. Define derivations

Di on the polynomial ring P;n "=L[X1,..., X] by DiXi,=*,,, and D,a=O
for i’=l,2,...,n, ae L. For a bounded closed subset B in (L) and a
non-negative integer ], put

Ifl;," =sup l(Df)(b)l, for f e P;n,
m,b

where sup is taken over all m=(m, ., mn) e (Z>o) satisfying [ml" =m
+...q-mn<__], and all b=(b,...,b)eB, and D means DT’D...Dn.
Let C;(B) be the completion of the normed space (P:, I" I;,).

Let U be an open set in (L)n, and C;(U) the space of maps f" U
--L, which satisfy that, for any u e U, there exist a bounded closed
neighbourhood B o u in (L) and g e C;(B) such that f(b)=g(b)for
Vb e B. We define Df(u) as Dg(u) for m e (Z>__o), ml<=].


