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This is continued rom [1].
5. The ideas of the proofs of the results given in Sections 3 and 4 are

similar. Here we shall prove only Theorem 1. The proof is based on
some ideas o Sendov [3] and the author [2]. We begin with a well known
lemma of Sendov, which he used in the approximation theory.

Lemma 1 ([3], [4]). Let f be a periodic function with period 1, and
let p be its modulus of nonmonotonicity (on R). Suppose also that x e R
and >_ O. Then

(a) The inequality f(t)=f(x)+[(28) holds either for all t e [x, x+],
or for all t e [x--, x].

(b) The inequality f(t) f(x)-p(28) holds either for all t e [x,x+],
or for all t [x--8, x].

In what follows, a periodic function K with period 1 is said to be a

kernel if it is nonnegative, even and ] K(t)dt= 1.

Lemma 2. Let f be as in Theorem 1, and let be its moduls of non-
monotonicity. Suppose also that K is a kernel, and set

(/;
d0

For every e [0, 1/2],

IfllGt(4/)+ll(f, ")11+2(211f I--/(4)) K(t)dt.

(ii) For every >=1/2,
IlYll<=Z(4)+l[/(f ")ll.

Proof. (i) Let/ e [0, 1/2] and x e R. First we shall prove that

( 1 ) [f(x)l K($)dt(43) K($)dt+2 [f[[ K(t)dt+[{(f;

According to Lemma 1-(a) the inequality

(2) f(t) f(x) +(4)
holds either for all e [x, x+23], or for all e [x--23, x].

Suppose first that (2) holds or all t e [x, x+2]. In this case we shall
obtain an upper bound or the value of (f; x+3). We have

(3) (f; x+3)
d- 1/2

since f is a periodic function with period 1. Now we write (f; x+) in

the orm

Then:
()


