5. On the Total Variation of Argument $f(z)$ Whose Derivative Has a Positive Real Part

By Mamoru Nunokawa
Department of Mathematics, Gunma University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1989)

1. Introduction. Let R denote the class of functions which are analytic and satisfy $R e f^{\prime}(z)>0$ for $|z|<1$ and are normalized by $f(0)=0$ and $f^{\prime}(0)=1$.

Noshiro [3] and Warschawski [4] showed that $\operatorname{Ref}^{\prime}(z)>0$ is a sufficient condition for the univalence of $f(z)$ in any convex domain.

MacGregor [2] investigated the class of functions which belong to R and obtained many interesting results.

It is the purpose of the present paper to obtain the total variation of argument $f(z)$ whose derivative has a positive real part.
2. Preliminaries. Lemma 1. Let $f(z) \in R$, then

$$
\left|\frac{z}{f(z)}\right| \leqq \frac{2}{r} \log (1+r)-1
$$

where $0<|z|=r<1$.
We owe this lemma to [2, Theorem 1].
Lemma 2. Let $f(z) \in R$, then

$$
\int_{0}^{2 \pi}\left|f^{\prime}(z)\right| d \theta \leqq 2 \pi+4 \log \frac{1+r}{1-r}
$$

where $|z|=r<1$.
We owe this lemma to [1, p. 482].
3. Statement of result. Theorem. Let $f(z) \in R$, then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}\right| d \theta \leqq 2 \pi+4 \log \frac{1+r}{1-r} \tag{1}
\end{equation*}
$$

where $|z|=r<1$.
Proof. From Lemmas 1 and 3, we easily have

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}\right| d \theta & \leqq \int_{0}^{2 \pi}\left|\frac{z f^{\prime}(z)}{f(z)}\right| d \theta \leqq\left(\frac{2}{r} \log (1+r)-1\right) \int_{0}^{2 \pi}\left|f^{\prime}(z)\right| d \theta \\
& \leqq\left(2 \log (1+r)^{1 / r}-1\right)\left(2 \pi+4 \log \frac{1+r}{1-r}\right) \\
& \leqq 2 \pi+4 \log \frac{1+r}{1-r}
\end{aligned}
$$

where $0<|z|=r<1$.
For the case $r=0$, the estimation (1) is true.
This completes our proof and (1) implies that

$$
\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}\right| d \theta=0\left(\log \frac{1}{1-r}\right) \quad \text { as } r \rightarrow 1
$$

