40. A Spectral Decomposition of the Product of Four Zeta-values

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodaira, m. J. A., May 12, 1989)

The aim of this note is to inject Kuznecov's trace formula [2] into the argument of our former work [4], and to make a preparation which will be needed in our plan of a finer study of the fourth power moment of the Riemann zeta-function over the critical line.

We consider the product $\zeta(u) \zeta(v) \zeta(w) \zeta(z)$. In the region of absolute convergence this is decomposed into three parts:

$$
\left\{\sum_{k m=l n}+\sum_{k m<l n}+\sum_{k m>l n}\right\} k^{-u} l^{-v} m^{-w} n^{-z} .
$$

The first sum can be computed by means of Ramanujan's identity. Let us denote the second sum by $g(u, v, w, z)$; then the third is $g(v, u, z, w)$. We put

$$
\begin{aligned}
& g^{*}(u, v, w, z)=g(u, v, w, z)-\Gamma(z)^{-1} \Gamma(1-w) \Gamma(w+z-1) \zeta(u+v) \\
& \quad \times \zeta(w+z-1) \zeta(u-w+1) \zeta(v-z+1)\{\zeta(u+v-w-z+2)\}^{-1} \\
& \quad-2(2 \pi)^{w-u} \cos \left(\frac{\pi}{2}(u-w)\right) \Gamma(z)^{-1} \Gamma(u-w) \Gamma(1-u) \Gamma(u+z-1) \\
& \quad \times \zeta(u+z-1) \zeta(v+w) \zeta(u-w) \zeta(v-z+1)\{\zeta(v+w-u-z+2)\}^{-1} .
\end{aligned}
$$

Then we are going to show that an analytic continuation of g^{*} can be described in terms of sums of products of Hecke L-series.

To state our result we have to introduce some terminologies from the theory of automorphic functions : Let $\left\{\chi_{j}^{2}+(1 / 4) ; \chi_{j}>0\right\} \cup\{0\}$ be the discrete spectrum of the non-Euclidean Laplacian acting on the usual Hilbert space of L^{2} automorphic functions with respect to the full modular group. Let φ_{j} be the Maass wave form attached to χ_{j}. With the first Fourier coefficient $\rho_{j}(1)$ of φ_{j} we put $\alpha_{j}=\left|\rho_{j}(1)\right|^{2}\left(\cos \left(i \pi \chi_{j}\right)\right)^{-1}$. Also, H_{j} is the Hecke L-series corresponding to φ_{j}, and ε_{j} is the parity sign of φ_{j}. Next, let $\left\{\varphi_{j, 2 k}\right.$; $\left.1 \leqq j \leqq d_{2 k}\right\}$ be the orthonormal base, consisting of eigen functions of Hecke operators $T_{2 k}(n)$, of the usual unitary space of regular cusp forms of weight $2 k$ with respect to the full modular group. With the first Fourier coefficient $\rho_{j, 2 k}(1)$ of $\varphi_{j, 2 k}$ we put $\alpha_{j, 2 k}=(4 \pi)^{1-2 k}(2 k-1)!\left|\rho_{j, 2 k}(1)\right|^{2}$. Finally, $H_{j, 2 k}$ is the Hecke L-series corresponding to $\varphi_{j, 2 k}$.

Further, let $\theta>1$ be a parameter, and let A_{θ} be the domain $\left\{(u, v, w, z) ; 2 \operatorname{Re}(z)>\operatorname{Re}(u+v+w+z)>\frac{3}{2}+2 \theta, \operatorname{Re}(u+z)<\theta, \operatorname{Re}(w+z)<\theta\right\}$.
In A_{θ} we define two functions Ψ_{θ} and Φ_{θ} by

