39. Zeta Zeros, Hurwitz Zeta Functions and $L(1, \chi)$

By Akio FUJII

Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1989)

§ 1. Introduction. Let a be a positive number <1. We are concerned with the value distribution of the Hurwitz zeta function $\zeta(s,a) = \sum_{n=0}^{\infty} \frac{1}{(n+a)^s}$ (for Re(s)>1), at the zeros of the Riemann zeta function $\zeta(s)$.

Although $\zeta(s,a)$ has many good properties like $\zeta(s)$, it fails to have the Euler product formula except when a=1/2, in which case we have $\zeta(s,1/2)=(2^s-1)\zeta(s)$. So it might be interesting to clarify how any problem concerning $\zeta(s,a)$ depends on a. We assume the Riemann Hypothesis throughout this article and prove the following theorem. To state our theorem, we put $L_a(1)=\sum\limits_{n=1}^{\infty}\frac{e(-na)}{n}$ with $e(y)=e^{2\pi iy}$ and $\Lambda(x)=\log p$ if $x=p^k$ with a prime number p and an integer $k\geq 1$, and =0 otherwise. We denote the imaginary parts of the zeros of $\zeta(s)$ by γ .

Theorem. For any positive a < 1,

$$\lim_{T\to\infty}\frac{2\pi}{T}\sum_{0<\gamma\leq T}\zeta\Big(\frac{1}{2}+i\gamma,a\Big)=-\varLambda\Big(\frac{1}{a}\Big)-L_a(1).$$

From this theorem we see first that for any integer $k \ge 2$,

$$1 + \frac{1}{2} + \dots + \frac{1}{k-1} - \frac{k-1}{k} + \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k-1} - \frac{k-1}{2k} + \frac{1}{2k+1} + \dots = \log k,$$

since $\sum_{b=1}^{k-1} \zeta(s, b/k) = (k^s-1)\zeta(s)$ and $\sum_{b=1}^{k-1} \Lambda(k/b) = \sum_{m|k} \Lambda(m) = \log k$. (We know, of course, that this can be proved in an elementary way.)

We see next that for any primitive character $\chi \mod q \ge 3$,

$$\begin{split} &\lim_{T\to\infty}\frac{2\pi}{T}\sum_{b=1}^{q-1}\bar{\chi}(b)\sum_{0<\gamma\leq T}\zeta\Big(\frac{1}{2}+i\gamma,\frac{b}{q}\Big)\\ &=-\sum_{b=1}^{q-1}\bar{\chi}(b)\Lambda\Big(\frac{q}{b}\Big)-\sum_{b=1}^{q-1}L_{b/q}(1)\bar{\chi}(b)\\ &=-\Lambda(q)-\sum_{n=1}^{\infty}\frac{1}{n}\sum_{b=1}^{q-1}e\Big(-\frac{b}{q}n\Big)\bar{\chi}(b)\\ &=-\Lambda(q)-\bar{\tau}(\chi)L(1,\chi), \end{split}$$

where $L(s,\chi)$ is the Dirichlet *L*-function and $\tau(\chi) = \sum_{b=1}^{q} \chi(b) e(b/q)$. Moreover since $\zeta(s,b/q)$ can be written as a linear combination of *L*-functions, we get the following new expressions of $L(1,\chi)$ (cf. also [5] and [6] for other type of expressions).

Corollary. For any primitive character $\chi \mod q \geq 3$,