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§1. Introduction. Let a be a positive number <1. We are con-
cerned with the value distribution of the Hurwitz zeta function {(s, a)=

3, #—(n_i L (for Re (s)>1), at the zeros of the Riemann zeta function &(s).
n=0

Although £&(s, @) has many good properties like {(s), it fails to have
the Euler product formula except when a=1/2, in which case we have
€(s, 1/2)=(2:—1)¢(s). So it might be interesting to clarify how any prob-
lem concerning (s, @) depends on a. We assume the Riemann Hypothesis
throughout this article and prove the following theorem. To state our

theorem, we put La(1)=f:‘,e(;1;7’a)— with e(y)=¢€** and A(x)=logp if
n=1

x=p* with a prime number p and an integer k>1, and =0 otherwise.
We denote the imaginary parts of the zeros of Z(s) by 7.
Theorem. For any positive a<<1,
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From this theorem we see first that for any integer t>2,
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since > ¥21¢(s, b/k)=(k*—1¢(s) and > 21 A(k/b)=3 . A(m)=log k. (We
know, of course, that this can be proved in an elementary way.)
We see next that for any primitive character X mod ¢>3,
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where L(s, %) is the Dirichlet L-function and z()=2>7_,%(D)e(b/q). More-
over since (s, b/q) can be written as a linear combination of L-functions,

we get the following new expressions of L(1,%) (cf. also [5] and [6] for
other type of expressions).

Corollary. For any primitive character X mod ¢>3,



