39. Zeta Zeros, Hurwitz Zeta Functions and L(1, $\chi)$

By Akio Fujir
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. a., May 12, 1989)

§ 1. Introduction. Let a be a positive number <1. We are concerned with the value distribution of the Hurwitz zeta function $\zeta(s, a)=$ $\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}}$ (for $\operatorname{Re}(s)>1$), at the zeros of the Riemann zeta function $\zeta(s)$.

Although $\zeta(s, a)$ has many good properties like $\zeta(s)$, it fails to have the Euler product formula except when $a=1 / 2$, in which case we have $\zeta(s, 1 / 2)=\left(2^{s}-1\right) \zeta(s)$. So it might be interesting to clarify how any problem concerning $\zeta(s, a)$ depends on a. We assume the Riemann Hypothesis throughout this article and prove the following theorem. To state our theorem, we put $L_{a}(1)=\sum_{n=1}^{\infty} \frac{e(-n a)}{n}$ with $e(y)=e^{2 \pi i y}$ and $\Lambda(x)=\log p$ if $x=p^{k}$ with a prime number p and an integer $k \geq 1$, and $=0$ otherwise. We denote the imaginary parts of the zeros of $\zeta(s)$ by γ.

Theorem. For any positive $a<1$,

$$
\lim _{T \rightarrow \infty} \frac{2 \pi}{T} \sum_{0<r \leq T} \zeta\left(\frac{1}{2}+i \gamma, a\right)=-\Lambda\left(\frac{1}{a}\right)-L_{a}(1)
$$

From this theorem we see first that for any integer $k \geq 2$,

$$
\begin{aligned}
& 1+\frac{1}{2}+\cdots+\frac{1}{k-1}-\frac{k-1}{k}+\frac{1}{k+1}+\frac{1}{k+2}+\cdots \\
& +\frac{1}{2 k-1}-\frac{k-1}{2 k}+\frac{1}{2 k+1}+\cdots \\
& =\log k
\end{aligned}
$$

since $\sum_{b=1}^{k-1} \zeta(s, b / k)=\left(k^{s}-1\right) \zeta(s)$ and $\sum_{b=1}^{k-1} \Lambda(k / b)=\sum_{m \mid k} \Lambda(m)=\log k$. (We know, of course, that this can be proved in an elementary way.)

We see next that for any primitive character $\chi \bmod q \geq 3$,

$$
\begin{aligned}
\lim _{T \rightarrow \infty} & \frac{2 \pi}{T} \sum_{b=1}^{q-1} \bar{\chi}(b) \sum_{0<r \leq T} \zeta\left(\frac{1}{2}+i \gamma, \frac{b}{q}\right) \\
& =-\sum_{b=1}^{q-1} \bar{\chi}(b) \Lambda\left(\frac{q}{b}\right)-\sum_{b=1}^{q-1} L_{b / q}(1) \bar{\chi}(b) \\
& =-\Lambda(q)-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{b=1}^{q-1} e\left(-\frac{b}{q} n\right) \bar{\chi}(b) \\
& =-\Lambda(q)-\bar{\tau}(\chi) L(1, \chi),
\end{aligned}
$$

where $L(s, \chi)$ is the Dirichlet L-function and $\tau(\chi)=\sum_{b=1}^{q} \chi(b) e(b / q)$. Moreover since $\zeta(s, b / q)$ can be written as a linear combination of L-functions, we get the following new expressions of $L(1, \chi)$ (cf. also [5] and [6] for other type of expressions).

Corollary. For any primitive character $\chi \bmod q \geq 3$,

