38. A Discrepancy Problem with Applications to Linear Recurrences. I

By Péter Kiss*),t) and Robert F. Tichy**)

(Communicated by Shokichi Iyanaga, m. J. a., May 12, 1989)

1. Introduction. Let $R=\left\{R_{n}\right\}_{n=0}^{\infty}$ be a second order linear recursive sequence of rational integers defined by

$$
R_{n}=A \cdot R_{n-1}+B \cdot R_{n-2}(n>1)
$$

where the initial values R_{0}, R_{1} and A, B are fixed integers. We suppose that $A B \neq 0, R_{0}^{2}+R_{1}^{2} \neq 0$ and $D=A^{2}+4 B \neq 0$. It is well-known that the terms of R can be expressed as
(1)
$R_{n}=a \cdot \alpha^{n}-b \cdot \beta^{n}$
for any $n \geqq 0$, where α and β are the roots of the polynomial $x^{2}-A x-B$ and

$$
a=\frac{R_{1}-R_{0} \beta}{\alpha-\beta}, \quad b=\frac{R_{1}-R_{0} \alpha}{\alpha-\beta} .
$$

Throughout this paper, we assume $|\alpha| \geqq|\beta|$ and that the sequence is non-degenerate, i.e. α / β is not a root of unity. We may also suppose that $R_{n} \neq 0$ for $n>0$ since in [2] it was proved that a non-degenerate sequence R has at most one zero term and after a movement of indices this condition will be fulfilled.

If $D=A^{2}+4 B>0$, i.e. if α and β are real numbers, then $|\alpha|>|\beta|$ and $(\beta / \alpha)^{n} \rightarrow 0$ as $n \rightarrow \infty$; hence we obtain by (1)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(R_{n+1} / R_{n}\right)=\alpha . \tag{2}
\end{equation*}
$$

The following interesting problem arises: what is the quality of approximation of α by rationals of the form R_{n+1} / R_{n} ? In the case $D>0$ we know that there are constants $q>0$ and $k_{0}\left(0<k_{0} \leqq 2\right)$, depending on the parameters of the sequence R, such that

$$
\begin{equation*}
\left|\alpha-\frac{R_{n+1}}{R_{n}}\right|<q \cdot R_{n}^{-k} \tag{3}
\end{equation*}
$$

for infinitely many n and for any $k \leqq k_{0}$, but (3) holds only for finitely many n if $k>k_{0}$ (see [5]). For the sequence R with initial values $R_{0}=0$, $R_{1}=1$ it was proved in [3] that $k_{0}=2$ if and only if $|B|=1$; furthermore

$$
\left|\alpha-\frac{R_{n+1}}{R_{n}}\right|<\frac{1}{\sqrt{D} \cdot R_{n}^{2}}
$$

for infinitely many n, and these rational numbers R_{n+1} / R_{n} give the best

[^0]
[^0]: †) Research partially supported by Hungarian National Foundation for Scientific Research Grant no. 273.
 *) Teachers' Training College, Department of Mathematics, Eger, Hungary.
 **) Department of Technical Mathematics, Technical University of Vienna, Vienna, Austria.

