37. Properties of Certain Analytic Functions

By Hitoshi Saitoh
Department of Mathematics, Gunma College of Technology
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1989)

1. Introduction. Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}(p \in N=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z:|z|<1\}$.
Further, we define a function $F_{\lambda}(z)$ by

$$
\begin{equation*}
F_{\lambda}(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z) \tag{1.2}
\end{equation*}
$$

for $\lambda \geqq 0$ and $f(z) \in A(p)$. In the present paper, we derive some properties of functions in the class $A(p)$, and of the function $F_{\lambda}(z)$ defined by (1.2).
2. Main results. We begin with the statement of the following lemma due to Miller [1].

Lemma. Let $\phi(u, v)$ be a complex valued function such that

$$
\phi: D \rightarrow C, D \subset C \times C(C \text { is the complex plane }),
$$

and let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$. Suppose that the function $\phi(u, v)$ satisfies
(i) $\phi(u, v)$ is continuous in D,
(ii) $(1,0) \in D$ and $\operatorname{Re}\{\phi(1,0)\}>0$,
(iii) for all $\left(i u_{2}, v_{1}\right) \in D$ such that $v_{1} \leqq-\left(1+u_{2}^{2}\right) / 2, \operatorname{Re}\left\{\phi\left(i u_{2}, v_{1}\right)\right\} \leqq 0$.

Let $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ be regular in the unit disk U such that ($\left.p(z), z p^{\prime}(z)\right) \in D$ for all $z \in U$. If

$$
\operatorname{Re}\left\{\phi\left(p(z), z p^{\prime}(z)\right)\right\}>0 \quad(z \in U)
$$

then $\operatorname{Re}\{p(z)\}>0(z \in U)$.
Applying the above lemma, we prove
Theorem 1. Let a function $f(z)$ defined by (1.1) be in the class $A(p)$. If

$$
\operatorname{Re}\left\{\frac{f^{(j)}(z)}{z^{p-j}}\right\}>\alpha \quad\left(0 \leqq \alpha<\frac{p!}{(p-j)!} ; z \in U\right)
$$

then we have

$$
\operatorname{Re}\left\{\frac{f^{(j-1)}(z)}{z^{p-j+1}}\right\}>\frac{1}{(p-j+1)!} \frac{(p-j+1)!2 \alpha+p!}{2(p-j)+3} \quad(z \in U)
$$

where $1 \leqq j \leqq p$.
Proof. We define the function $p(z)$ by

$$
\begin{equation*}
\frac{(p-j+1)!}{p!} \frac{f^{(j-1)}(z)}{z^{p-j+1}}=\beta+(1-\beta) p(z) \tag{2.1}
\end{equation*}
$$

with $\beta=\frac{(p-j+1)!2 \alpha+p!}{p!\{2(p-j)+3\}}$. Then $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ is regular in U. Differentiating both sides in (2.1), we obtain

