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1o Introduction. In this paper we present asymptotic stability theo-
rems or ordinary differential equations by extending Matrosov’s theorems
[4].

Let us consider the iollowing ordinary differential equation"

( 1 ) 2=X(t, x), (X(t, 0)_ 0),

where X: I’-R is a continuous unction, F=R+D, R+=[0, +c), and D
is a domain in R satisfying 0 e D.

Generalization o Liapunov’s asymptotic stability theorem is consid-
ered by Barbashin and Krasovskii (see [2] and [5]), Matrosov [4], LaSalle
[3], Hatvani [1], Wada and Yamamoto [7] and etc. These results include
the condition that the total derivative o a Liapunov unction computed
along the solutions of (1) is only negative semi-definite.

In the present paper, by extending Theorems 1.2 and 1.4 in [4], we
establish theorems or (globally) asymptotic stability, (globally) equi-
asymptotic stability and (globally) uniformly asymptotic stability as well as
uniform stability o the zero solution of (1). In Theorems 1.2 and 1.4 of
[4], Matrosov assumed that the function X, its partial derivatives 3X/3t,
X/3x (i=1, 2,..., n), and the first and second partial derivatives of a
Liapunov unction V, that is, V/t, V/x, V/t, V/tx, V/xx
(i, ] 1, 2, ., n), are continuous and bounded. In the oregoing paper [6],
we extended Theorem 1.2 in [4] and gave uniform asymptotic stability

theorems in which we generalized the above mentioned assumptions by
Matrosov. Our resulting theorems in the present paper includes more use-
ful conditions than the preceding paper’s.

2. Theorems. For e. 0, B is defined by B ={x e R [IX [[e} and for
a0, the set A(a,a) is defined by A(Ol,C2)-{xeRn:
where ]]xll denotes the Euclidean norm of x e R. Let C[A, E] be the family
ot all continuous unctions from a set A into a set E. A unction a(.)is
called a unction o class , i.e., a e, i a e C[R+,R /] is a strictly in-
creasing unction with a(0)=0. The positive part [x]+ of x e R is defined
by [x]+=max {0, x}, and the negative part [x]_ of x is defined by [x]_=
max {0, --x}. For a unction V e C[F, R] which is locally Lipschitzian in x,
the total derivative (,(t, x) of V with respect to (1) is defined by


