34. Unique Solvability of Nonlinear Fuchsian Equations

By Nour Said Madi*) and Masafumi Yoshino**)
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1989)

1. Introduction. Let $p \geq 2$ and $q \geq 0$ be integers, and let $x=\left(x_{1}, \cdots\right.$, x_{p}) and $y=\left(y_{1}, \cdots, y_{q}\right)$ be the variables in C^{p} and C^{q}, respectively. We denote by Z and N the set of integers and that of nonnegative integers, respectively. For a multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{p}\right) \in \boldsymbol{Z}^{p}$, we set $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{p}^{\alpha_{p}}$, $|\alpha|=\alpha_{1}+\cdots+\alpha_{p}$.

Let $m \geq 1$. Then we shall prove the unique solvability of nonlinear Fuchsian equations
(1) $\quad a\left(x, y ; D_{x}^{\alpha} D_{y}^{\beta} x^{r} u ;|\alpha|=|\gamma| \leq m,|\alpha|+|\beta| \leq m\right)=0$, where $a\left(x, y ; z_{\alpha \beta r}\right)$ is a holomorphic function of x, y and $z=\left(z_{\alpha \beta \gamma}\right)$. Because the study of the case $p=1$ is classical (cf. [1]), we are interested in the case $p \geq 2$. Madi [3] solved (1) under a so-called Poincare condition if $\alpha=\gamma$ and if (1) is linear. But, in the general case $\alpha \neq \gamma$, the definition of a Poincare condition is not clear. We also have a problem of a derivative loss which is caused by nonlinear terms in (1) such that $\beta \neq 0$.

We shall define a Poincare condition for (1) so that it extends the one in [3] in a natural way. Then we show the existence and uniqueness of solutions of (1) with an additional weak spectral condition (A.3). A deeper connection between the generalized Poincare condition and the Hilbert factorization problem is also discussed.

The proof is done by a reduction to a system of equations on a scale of Banach spaces, which enables us to estimate the derivative loss of nonlinear terms.
2. Statement of results. We denote by $C_{y}\{\{x\}\}$ the set of all formal power series $\sum_{\alpha \in N^{p}} u_{\alpha}(y) x^{\alpha}$ where $u_{\alpha}(y)$ are analytic functions of y in some neighborhood of the origin independent of α. We denote by $\boldsymbol{C}_{y}\{x\}$ the set of analytic functions of x and y at the origin. For a positive number $a \leq 1$, we define a ball \boldsymbol{B}_{a} by $\boldsymbol{B}_{a}=\left\{y \in \boldsymbol{C}^{q} ;\left|y_{i}\right|<a, i=1, \cdots, q\right\}$.

Let $A \subset\left\{\alpha \in Z^{p} ;|\alpha| \geq 0\right\}$ and $B \subset N^{q}$ be finite sets. Let π be the projection onto $\boldsymbol{C}_{y}\{\{x\}\}$;

$$
\begin{equation*}
\pi x^{\alpha} u(x, y)=\sum_{\eta, \eta+\alpha \geq 0} u_{\eta}(y) x^{\eta+\alpha}, u(x, y)=\sum_{\eta \geq 0} u_{\eta}(y) x^{\eta} \in \boldsymbol{C}_{y}\{\{x\}\} . \tag{2}
\end{equation*}
$$

We denote by $p_{\alpha \beta}(\partial)(\alpha \in A, \beta \in B)$ multipliers of order $m_{\alpha \beta}$ given by

$$
\begin{equation*}
p_{\alpha \beta}(\partial) v(x, y)=\sum_{\eta \geq 0} v_{\eta}(y) p_{\alpha \beta}(\eta) x^{\eta}, \quad v(x, y)=\sum_{\eta \geq 0} v_{\eta}(y) x^{\eta} \in \boldsymbol{C}_{y}\{\{x\}\}, \tag{3}
\end{equation*}
$$

[^0]
[^0]: *) Département de mathématiques, Fac. des Sciences, Rabat, Maroc.
 **) Department of Mathematics, Tokyo Metropolitan University, Japan.

