34. Unique Solvability of Nonlinear Fuchsian Equations

By Nour Said MADI*¹ and Masafumi YOSHINO**¹

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1989)

1. Introduction. Let $p \ge 2$ and $q \ge 0$ be integers, and let $x = (x_1, \dots, x_p)$ and $y = (y_1, \dots, y_q)$ be the variables in C^p and C^q , respectively. We denote by Z and N the set of integers and that of nonnegative integers, respectively. For a multi-index $\alpha = (\alpha_1, \dots, \alpha_p) \in Z^p$, we set $x^{\alpha} = x_1^{\alpha_1} \cdots x_p^{\alpha_p}$, $|\alpha| = \alpha_1 + \cdots + \alpha_p$.

Let $m \ge 1$. Then we shall prove the unique solvability of nonlinear Fuchsian equations

(1) $a(x, y; D_x^{\alpha} D_y^{\beta} x^{\gamma} u; |\alpha| = |\gamma| \le m, |\alpha| + |\beta| \le m) = 0,$

where $a(x, y; z_{\alpha\beta\gamma})$ is a holomorphic function of x, y and $z = (z_{\alpha\beta\gamma})$. Because the study of the case p=1 is classical (cf. [1]), we are interested in the case $p \ge 2$. Madi [3] solved (1) under a so-called Poincare condition if $\alpha = \gamma$ and if (1) is linear. But, in the general case $\alpha \neq \gamma$, the definition of a Poincare condition is not clear. We also have a problem of a derivative loss which is caused by nonlinear terms in (1) such that $\beta \neq 0$.

We shall define a Poincare condition for (1) so that it extends the one in [3] in a natural way. Then we show the existence and uniqueness of solutions of (1) with an additional weak spectral condition (A.3). A deeper connection between the generalized Poincare condition and the Hilbert factorization problem is also discussed.

The proof is done by a reduction to a system of equations on a scale of Banach spaces, which enables us to estimate the derivative loss of nonlinear terms.

2. Statement of results. We denote by $C_y\{\{x\}\}$ the set of all formal power series $\sum_{\alpha \in N^p} u_{\alpha}(y) x^{\alpha}$ where $u_{\alpha}(y)$ are analytic functions of y in some neighborhood of the origin independent of α . We denote by $C_y\{x\}$ the set of analytic functions of x and y at the origin. For a positive number $a \leq 1$, we define a ball B_a by $B_a = \{y \in C^a; |y_i| < a, i = 1, \dots, q\}$.

Let $A \subset \{\alpha \in \mathbb{Z}^p; |\alpha| \ge 0\}$ and $B \subset \mathbb{N}^q$ be finite sets. Let π be the projection onto $C_{y}\{\{x\}\}$;

(2)
$$\pi x^{\alpha} u(x, y) = \sum_{\eta, \eta + \alpha \ge 0} u_{\eta}(y) x^{\eta + \alpha}, \quad u(x, y) = \sum_{\eta \ge 0} u_{\eta}(y) x^{\eta} \in C_{y} \{ \{x\} \}.$$

We denote by $p_{\alpha\beta}(\partial)$ ($\alpha \in A, \beta \in B$) multipliers of order $m_{\alpha\beta}$ given by

$$(3) \qquad p_{\alpha\beta}(\partial) v(x,y) = \sum_{\eta \ge 0} v_{\eta}(y) p_{\alpha\beta}(\eta) x^{\eta}, \quad v(x,y) = \sum_{\eta \ge 0} v_{\eta}(y) x^{\eta} \in C_{y}\{\{x\}\},$$

^{*)} Département de mathématiques, Fac. des Sciences, Rabat, Maroc.

^{**)} Department of Mathematics, Tokyo Metropolitan University, Japan.