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Let L(z, z) be a linear partial differential operator with the order
ml. Its coefficients are holomorphic in a neighbourhood o the origin
z=0 in Cn/l. K is a nonsingular complex hypersurface through z=0.
In the present paper we treat the equation
(0.1) L(z, 3z)U(Z)-- f(z).
We assume K is characteristic or L(z, 3z). The functions u(z) and f(z)
in (0.1) are holomorphic except on K. The results are the following"
I. u(z) has some growth order near K and the behaviour o f(z) near
K is mild, then that of u(z) is also the same type. (Theorems 2. 1 and
2.3 and Corollaries). The proofs will be given elsewhere.

1. Definitions. In order to state the results we give notations
and definitions" z (Zo, z, ., Zn)-- (Zo, Z’) is the coordinate
=max{lzl; Oin}. 3=(30,3, "",3)--(0,’), 3--3/z. We choose the
coordinate so that K={z0--0}. We can write the operator L(z, ) in the
orm

’L(z, 3z)= :0L(z, 3z),
A t(z, 5’)(30)-t(1.1) L(z, )--t:s ,

n,t(z, 3’) (Zo)Ja,(z, ’) = (k, 1)
where L(z, 3) is the homogeneous part of order k, A,(z, 3’)O if
L(z, 3) 0 and a, (0, z’, 39 0 if A, (z, 3’) 0. We put s + oo if L(z, )
----0, and ]=](k,/)= / oo if A,(z, ’)--0.

Let us define the characteristic indices introduced in 0uchi [7] and
[8]. Put d, / ] (k, l) and
(1.2) d=min{d, s_lk}.
Put A-{(k, d) e R" O_k_m, d: +c}. Let 3 be the convex hull of A.
Let 27 be the lower convex lart of the boundary of , and z/be the set
of vertices of X, z/={(k, d); i=0, 1, ..., l’}, m=kok... k,_O. We
put
(1.3) a=max{1, (di_l-d)/(k_--k)}.
Then there exists a p e N such that aa). z_a=1. We call
{a; l_i_p} the characteristic indices o L(z, 3) or the surface K.
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