$1.$ Nonlinear Eigenvalue Problem $\Delta u + \lambda e^u = 0$ on Simply Connected Domains in R

By Takashi SUZUKI*) and Ken'ichi NAGASAKI**)

(Communicated by Kôsaku Yosina, M. J. A., Jan. 12, 1989)

1. Introduction and results. In the previous work [3, 4], we studied the connectivity of the branch of minimal solutions C starting from $(\lambda, u) = (0, 0)$ and that of Weston-Moseley's large solutions C^* as $\lambda \downarrow 0$ ([6, 2]) for the nonlinear eigenvalue problem

(1.1) $-4u = \lambda e^u$ (in Ω) and $u=0$ (on $\partial\Omega$), where λ is a positive constant, $\Omega \subset \mathbb{R}^2$ is a simply-connected bounded domain with smooth boundary $\partial\Omega$, and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a classical solution. We have established the connectivity of C and C^* when Ω is close to a disc. In this note, we shall refine the result and give an explicit criterion for Ω to have such a property for (1.1).

Our basic idea was to parametrize the solutions $h = (u, \lambda)$ of (1.1) through $s = \lambda \int_a e^u dx$. Thus we introduce the nonlinear mapping $\Phi(h, s): \hat{X} \times \mathbf{R} \to \hat{Y}$ by $\Phi(h, s) = {}^{r}(Au + \lambda e^u, \int_a e^u dx - (s/\lambda))$ for $h = {}^{r}(u, \lambda)$ and $s \in \mathbf{R}_+$, where $\hat{X} = \{X \times \mathbf{R}_+\}$ and $\hat{Y} = \{Y \times \mathbf{R}\}$ with $X = C_0^{2+\alpha}(\overline{\Omega}) \equiv \{v \in C^{2+\alpha}(\overline{\Omega})\}$ $v=0$ on $\partial\Omega$ and $Y=C^{\alpha}(\overline{\Omega})$ for $0<\alpha<1$. For this mapping we claim that

Theorem 1. For each zero-point (h, s) of Φ , the linearized operator

 $d_h \Phi(h, s) : \hat{X} \to \hat{Y}$ is invertible provided that $0 \lt s \lt \ot 8\pi$.
Since the a priori estimates $||u||_{C^0(\bar{B})} \leq -2 \log \exp(|u||_{C^0(\bar{B})}) \leq \lambda \leq \bar{\lambda}$ hold if $0 \lt s \lt \ot 8\pi$ for some $\bar{\lambda} = \bar{\lambda}(\bar{X})$
following theorem foll Since the a priori estimates $||u||_{C^{0}(\overline{B})} \leq -2\log(1-(s/8\pi))$ and $s|\Omega|^{-1}$ $\exp(|u||_{C^{0}(\bar{\Omega})}) \leq \lambda \leq \bar{\lambda}$ hold if $0 < s < 8\pi$ for some $\bar{\lambda} = \bar{\lambda}(\Omega)$, the first part of the following theorem follows immediately from the above one. On the other hand the latter part holds by the fact that $s<4\pi$ and $s<8\pi$ imply $\mu_1(p)>0$ and $\mu_2(p) > 0$, respectively, where $\{\mu_j(p)\}_{j=1}^{\infty}(-\infty \leq \mu_1(p)\leq \mu_2(p)\leq \cdots \to \infty)$ are the eigenvalues of $A_p=-1-p$ under Dirichlet condition for $p=\lambda e^u$:

Theorem 2. In $s-h$ plane, there exists a branch S of zero-points of Φ starting from $(s, h) = (0, 0)$ and continuing up to $s = 8\pi$ without bending, and furthermore, there is no other zero-point of Φ other than S in the area $0 \leq s \leq 8\pi$. The corresponding branch C in $\lambda - u$ plane to S starts from (λ, u) = $(0, 0)$ and bends at most once.

On the other hand, along the Weston-Moselely's branch C^* of large solutions, we have from [4] that $S = \lambda \int_a e^u dx = 8\pi + c\pi\lambda + O(\lambda)$ as $\lambda \downarrow 0$, where $C=C(\Omega)=-|a_1|^2+\sum_{n=3}^{\infty}(n^2/(n-2))|a_n|^2$ for the normalized Riemann mapping

 \ast) Department of Mathematics, Faculty of Science, Tokyo Metropolitan University.

 ** Department of Mathematics, Faculty of Engineering, Chiba Institute of Technologg.