1. Nonlinear Eigenvalue Problem $\Delta u + \lambda e^u = 0$ on Simply Connected Domains in R^2

By Takashi SUZUKI*) and Ken'ichi NAGASAKI**)

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1989)

§1. Introduction and results. In the previous work [3, 4], we studied the connectivity of the branch of minimal solutions <u>C</u> starting from $(\lambda, u) = (0, 0)$ and that of Weston-Moseley's large solutions C^* as $\lambda \downarrow 0$ ([6, 2]) for the nonlinear eigenvalue problem

(1.1) $-\Delta u = \lambda e^u$ (in Ω) and u = 0 (on $\partial \Omega$), where λ is a positive constant, $\Omega \subset \mathbb{R}^2$ is a simply-connected bounded domain with smooth boundary $\partial \Omega$, and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is a classical solution. We have established the connectivity of \underline{C} and C^* when Ω is close to a disc. In this note, we shall refine the result and give an explicit criterion for Ω to have such a property for (1.1).

Our basic idea was to parametrize the solutions $h = {}^{T}(u, \lambda)$ of (1.1) through $s = \lambda \int_{a} e^{u} dx$. Thus we introduce the nonlinear mapping $\Phi = \Phi(h, s): \hat{X} \times \mathbf{R} \to \hat{Y}$ by $\Phi(h, s) = {}^{T}(\Delta u + \lambda e^{u}, \int_{a} e^{u} dx - (s/\lambda))$ for $h = {}^{T}(u, \lambda)$ and $s \in \mathbf{R}_{+}$, where $\hat{X} = {}^{T}(X \times \mathbf{R}_{+})$ and $\hat{Y} = {}^{T}(Y \times \mathbf{R})$ with $X = C_{0}^{2+\alpha}(\overline{\Omega}) \equiv \{v \in C^{2+\alpha}(\overline{\Omega}) | v = 0 \text{ on } \partial\Omega\}$ and $Y = C^{\alpha}(\overline{\Omega})$ for $0 < \alpha < 1$. For this mapping we claim that

Theorem 1. For each zero-point (h, s) of Φ , the linearized operator $d_h \Phi(h, s) : \hat{X} \rightarrow \hat{Y}$ is invertible provided that $0 < s < 8\pi$.

Since the a priori estimates $||u||_{\mathcal{C}^0(\bar{p})} \leq -2\log(1-(s/8\pi))$ and $s|\Omega|^{-1} \exp(||u||_{\mathcal{C}^0(\bar{p})}) \leq \lambda \leq \bar{\lambda}$ hold if $0 < s < 8\pi$ for some $\bar{\lambda} = \bar{\lambda}(\Omega)$, the first part of the following theorem follows immediately from the above one. On the other hand the latter part holds by the fact that $s < 4\pi$ and $s < 8\pi$ imply $\mu_1(p) > 0$ and $\mu_2(p) > 0$, respectively, where $\{\mu_j(p)\}_{j=1}^{\infty}(-\infty < \mu_1(p) < \mu_2(p) \leq \cdots \rightarrow \infty)$ are the eigenvalues of $A_p \equiv -\mathcal{A} - p$ under Dirichlet condition for $p = \lambda e^u$:

Theorem 2. In s-h plane, there exists a branch S of zero-points of Φ starting from (s, h)=(0, 0) and continuing up to $s=8\pi$ without bending, and furthermore, there is no other zero-point of Φ other than S in the area $0 < s < 8\pi$. The corresponding branch C in $\lambda-u$ plane to S starts from $(\lambda, u)=(0, 0)$ and bends at most once.

On the other hand, along the Weston-Moselely's branch C^* of large solutions, we have from [4] that $S \equiv \lambda \int_{a} e^u dx = 8\pi + c\pi\lambda + 0(\lambda)$ as $\lambda \downarrow 0$, where $C = C(\Omega) = -|a_1|^2 + \sum_{n=3}^{\infty} (n^2/(n-2))|a_n|^2$ for the normalized Riemann mapping

^{*)} Department of Mathematics, Faculty of Science, Tokyo Metropolitan University.

^{**)} Department of Mathematics, Faculty of Engineering, Chiba Institute of Technology.