28. On the Essential Self-adjointness of Pseudo-differential Operators

By Michihiro Nagase*) and Tomio Umeda**)
(Communicated by Kôsaku Yosida, m. J. A., April 12, 1988)

§ 1. Introduction. In a rigorous treatment of quantum mechanics it is basically important to consider the problem : Is a quantum Hamiltonian self-adjoint? In the present paper we state several theorems on the essential self-adjointness of pseudo-differential operators with Weyl symbols. Applying the theorems we can show the essential self-adjointness of Weyl quantized Hamiltonians.

In [8], M. A. Shubin gives a proof of essential self-adjointness of pseudo-differential operators by using a global hypo-elliptic estimate. However, we can obtain the theorems without use of hypo-ellipticity. In order to get our main result we use an algebra of spatially inhomogeneous pseudo-differential operators, which are studied, for example, in [1], [3] and [4].

We do not give detailed proofs of the theorems here. The detailed proofs will be published elsewhere.
§ 2. An algebra of pseudo-differential operators. We give here some results on pseudo-differential operators. The results have already been obtained fundamentally by Iwasaki [3] and Kumano-go and Taniguchi [4], however, we have to reproduce some of their results in a suitable form to our purpose.

Definition 2.1 (see [3] and [4]). A smooth function $\lambda(x, \xi)$ on $\boldsymbol{R}^{d} \times \boldsymbol{R}^{d}$ is called a basic weight function if
(1) $1 \leq \lambda(x+y, \xi) \leq C_{0}\langle y\rangle^{\ulcorner } \lambda(x, \xi)$,
(2) $\left|\lambda_{(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{\alpha \beta} \lambda(x, \xi)^{1-|\alpha|+\delta|\beta|} \quad$ for any α and β,
where τ and δ are non-negative constants with $0 \leq \delta<1,\langle y\rangle=\left(1+|y|^{2}\right)^{1 / 2}$ and

$$
\lambda_{(\beta)}^{(\alpha)}(x, \xi)=\left(-i \frac{\partial}{\partial x}\right)^{\beta}\left(\frac{\partial}{\partial \xi}\right)^{\alpha} \lambda(x, \xi) .
$$

Definition 2.2 (see [3] and [4]). Let m, δ and ρ be real numbers with $0 \leq \delta<\rho \leq 1$. We say that a smooth function $p(x, \xi)$ belongs to the class $S_{\lambda, \rho, \delta}^{m}$, if $p(x, \xi)$ satisfies

$$
\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{\alpha \beta} \lambda(x, y)^{m-\rho|\alpha|+\delta|\beta|} \quad \text { for any } \alpha \text { and } \beta .
$$

Let \mathcal{S} denote the Schwartz space of rapidly decreasing functions on \boldsymbol{R}^{d}. For $p(x, \xi) \in S_{\lambda, \rho, \delta}^{m}$ we define operators $p(X, D)$ and $p^{w}(X, D)$ on \mathcal{S} by

$$
p(X, D) u(x)=(2 \pi)^{-d} \int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi,
$$

[^0]
[^0]: *) Department of Mathematics, College of General Education, Osaka University. **) Department of Mathematics, Faculty of Science, Osaka University.

