27. On the Existence of the Poles of the Scattering Matrix for Several Convex Bodies

By Mitsuru IKAWA

Department of Mathematics, Osaka University

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1988)

1. Introduction. Let \mathcal{O} be an open bounded set in \mathbb{R}^3 with smooth boundary Γ . We set

$$\Omega = \boldsymbol{R}^{\mathrm{s}} - \overline{\mathcal{O}},$$

and suppose that Ω is connected. Consider the following acoustic problem

(1.1)
$$\begin{cases} \Box u(x,t) = \frac{\partial^2 u}{\partial t^2} - \Delta u = 0 & \text{in } \Omega \times (-\infty,\infty) \\ Bu(x,t) = 0 & \text{on } \Gamma \times (-\infty,\infty) \\ u(x,0) = f_1(x) \\ \frac{\partial u}{\partial t}(x,0) = f_2(x) \end{cases}$$

where $\Delta = \sum_{j=1}^{3} \partial^2 / \partial x_j^2$. As boundary operator *B* we shall consider the following two operators,

 $B_D = 1$ (Dirichlet condition)

and

 $B_{\scriptscriptstyle N} \!=\! \sum_{j=1}^{3} n_j(x) \partial/\partial x_j$ (Neumann condition)

where $n(x) = (n_1(x), n_2(x), n_3(x))$ denotes the unit outer normal of Γ at x.

Denote by $S_{\dagger}(z)$, $\dagger = D$, N, the scattering matrix for the scatterer \mathcal{O} under the boundary condition $B_{\dagger}u=0$ (for the definition, see [6]). It is well known that $S_{\dagger}(z)$ is an $\mathcal{L}(L^2(S^2))$ -valued meromorphic function in the whole complex domain C.

As to the modified Lax and Phillips conjecture,¹⁾ that is, when \mathcal{O} is trapping, there exists $\alpha > 0$ such that a slub domain $\{z; \operatorname{Im} z < \alpha\}$ contains an infinite number of poles of the scattering matrix, we have a few examples. Especially for the Dirichlet boundary condition an obstacle consisting of two disjoint convex bodies is the only example ([2, 3]). The purpose of this note is to study the modified Lax and Phillips conjecture in the case that \mathcal{O} consists of several disjoint strictly convex bodies. Our theorem gives a sufficient condition for the existence of such α , which is stated by means of an analytic function defined by using purely geometric informations of Ω .

This work was done during my stay at Massachusetts Institute of Technology. I would like to express my sincere gratitude to Professor Melrose for the invitation and stimulating conversations.

¹⁾ The original one is given in [6, page 158], but \mathcal{O} considered in [4] is a counter example.