26. Notes on Quasi-polarized Varieties

By Takao FUJITA

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko Kodaira, M. J. A., March 14, 1988)

- o. Let V be a variety, which means, an irreducible reduced projective scheme over an algebraically closed field \Re of any characteristic. A line bundle L on V is said to be nef if $LC \ge 0$ for any curve C in V. It is said to be big if $\kappa(L) = n = \dim V$. In case L is nef, it is big if and only if $L^n > 0$ (cf. [2; (6.5)]). When L is nef and big, the pair (V, L) will be called a *quasipolarized variety*. In this note we report several generalizations of results on polarized manifolds. For details see [4].
- 1. We have $\chi(V, tL) = \sum_{j=0}^n \chi_j t^{[j]}/j!$ for some integers $\chi_0, \chi_1, \dots, \chi_n$ where $t^{[j]} = t(t+1) \cdots (t+j-1)$ and $t^{[0]} = 1$. By the Riemann-Roch theorem we have $\chi_n = L^n$. Moreover, if V is normal, we have

$$-2\chi_{n-1} = (\omega + (n-1)L)L^{n-1}$$

for the canonical divisor ω of V. We set $g(V,L)=1-\chi_{n-1}$, which is called the *sectional genus* of (V,L). We set $\Delta(V,L)=n+L^n-h^0(V,L)$, which is called the Δ -genus of (V,L). We conjecture:

Both the Δ -genus and the sectional genus are non-negative for any quasi-polarized variety. Moreover, $\Delta = 0$ if and only if g = 0.

We expect further that we can classify somehow (V, L)'s with small Δ and g.

2. First of all we have the following

Theorem. $\Delta(V, L) \ge 0$ for any quasi-polarized variety. Moreover, if $\Delta = 0$, there are a polarized variety (W, H) and a birational morphism $f: V \rightarrow W$ such that $L = f^*H$ and $\Delta(W, H) = 0$.

We have a complete classification of polarized varieties of Δ -genus zero (cf. [1]). In particular g(W, H) = 0 and H is very ample. Hence g(V, L) = 0 and Bs $|L| = \emptyset$ if $\Delta(V, L) = 0$.

3. From now on, we assume char $(\Re) = 0$, since we need vanishing theorems of Kodaira-Kawamata-Viehweg type. Using the above theorem we obtain the following

Theorem. Let (V, L) be a normal quasi-polarized variety with dim V = n. Suppose that $h^n(V, -tL) = 0$ for any t such that $0 < t \le n$. Then there is a birational morphism $f: V \to \mathbf{P}^n$ such that $L = f^*\mathcal{O}(1)$.

4. Next we improve results in [3]. An element of $Pic(V) \otimes Q$ is called a *Q-bundle* on *V*. We define *Q*-valued intersection numbers of *Q*-bundles and the nefness of them in the natural way.

Let $\pi: M \to V$ be a desingularization of a normal variety V and set $S = \{x \in V \mid \dim \pi^{-1}(x) > 0\}$ and $E = \pi^{-1}(S)$. Then π is said to be nice if E is a