26. Notes on Quasi-polarized Varieties

By Takao Fujita
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., March 14, 1988)

0. Let V be a variety, which means, an irreducible reduced projective scheme over an algebraically closed field $\mathfrak{\Re}$ of any characteristic. A line bundle L on V is said to be nef if $L C \geqq 0$ for any curve C in V. It is said to be big if $\kappa(L)=n=\operatorname{dim} V$. In case L is nef, it is big if and only if $L^{n}>0$ (cf. [2; (6.5)]). When L is nef and big, the pair (V, L) will be called a quasipolarized variety. In this note we report several generalizations of results on polarized manifolds. For details see [4].
1. We have $\chi(V, t L)=\sum_{j=0}^{n} \chi_{j} t^{[j]} / j$! for some integers $\chi_{0}, \chi_{1}, \cdots, \chi_{n}$ where $t^{[j]}=t(t+1) \cdots(t+j-1)$ and $t^{[0]}=1$. By the Riemann-Roch theorem we have $\chi_{n}=L^{n}$. Moreover, if V is normal, we have

$$
-2 \chi_{n-1}=(\omega+(n-1) L) L^{n-1}
$$

for the canonical divisor ω of V. We set $g(V, L)=1-\chi_{n-1}$, which is called the sectional genus of (V, L). We set $\Delta(V, L)=n+L^{n}-h^{0}(V, L)$, which is called the 4 -genus of (V, L). We conjecture:

Both the Δ-genus and the sectional genus are non-negative for any quasi-polarized variety. Moreover, $\Delta=0$ if and only if $g=0$.

We expect further that we can classify somehow (V, L)'s with small Δ and g.
2. First of all we have the following

Theorem. $\quad \Delta(V, L) \geqq 0$ for any quasi-polarized variety. Moreover, if $\Delta=0$, there are a polarized variety (W, H) and a birational morphism $f: V \rightarrow W$ such that $L=f^{*} H$ and $\Delta(W, H)=0$.

We have a complete classification of polarized varieties of Δ-genus zero (cf. [1]). In particular $g(W, H)=0$ and H is very ample. Hence $g(V, L)$ $=0$ and $\mathrm{Bs}|L|=\varnothing$ if $\Delta(V, L)=0$.
3. From now on, we assume char $(\Re)=0$, since we need vanishing theorems of Kodaira-Kawamata-Viehweg type. Using the above theorem we obtain the following

Theorem. Let (V, L) be a normal quasi-polarized variety with $\operatorname{dim} V$ $=n$. Suppose that $h^{n}(V,-t L)=0$ for any t such that $0<t \leqq n$. Then there is a birational morphism $f: V \rightarrow \boldsymbol{P}^{n}$ such that $L=f^{*} \mathcal{O}(1)$.
4. Next we improve results in [3]. An element of $\operatorname{Pic}(V) \otimes \boldsymbol{Q}$ is called a \boldsymbol{Q}-bundle on V. We define \boldsymbol{Q}-valued intersection numbers of \boldsymbol{Q}-bundles and the nefness of them in the natural way.

Let $\pi: M \rightarrow V$ be a desingularization of a normal variety V and set $S=\left\{x \in V \mid \operatorname{dim} \pi^{-1}(x)>0\right\}$ and $E=\pi^{-1}(S)$. Then π is said to be nice if E is a

