24. On Some Inequalities in the Theory of Uniform Distribution. I

By Petko D. Proinov and Nedyalka A. Mitreva
Department of Mathematics, University of Plovdiv, Bulgaria
(Communicated by Shokichi Iyanaga, m. J. A., March 14, 1988)

In this note, we present two inequalities for the supremum norm and the oscillation of a function satisfying a one-sided Lipschitz condition on the interval $E=[0,1]$ and having equal values at the end points. As special cases of them we obtain two estimates for the φ-discrepancy of a sequence of real numbers, with respect to a distribution function satisfying a Lipschitz condition on E. The results generalize some inequalities of LeVeque [3], Yurinskii [12], Niederreiter ([5], [6]), and Proinov ([7], [8]).

1. Definition 1. A real-valued function f is said to satisfy the right Lipschitz condition on E with a positive constant L if
(1) $\quad f(x)-f(y) \leqq L(x-y) \quad$ for $x, y \in E$ with $x>y$.

Analogously, f is said to satisfy the left Lipschitz condition if
(2) $\quad f(x)-f(y) \geqq-L(x-y) \quad$ for $x, y \in E$ with $x>y$.

The function f is said to satisfy the one-sided Lipschitz condition on E with constant L if either (1) or (2) holds.

It is easy to prove that if a function satisfies a one-sided Lipschitz condition on E, then it is a function of bounded variation on E. For a bounded function f on E, we denote by $\|f\|$ and [f] its supremum norm and its oscillation, respectively.

Theorem 1. Let a function f satisfy the one-sided Lipschitz condition on E with constant L, and let $f(0)=f(1)$ and $\|f\| \leq L$. Then for any nondecreasing nonnegative function φ on $[0, \infty)$,

$$
\begin{equation*}
F(\|f\|) \leqq L \int_{0}^{1} \varphi(|f(x)|) d x \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 F\left(\frac{1}{2}[f]\right) \leqq L \int_{0}^{1} \varphi(|f(x)|) d x \tag{4}
\end{equation*}
$$

where the function F is defined on $[0, \infty)$ by

$$
\begin{equation*}
F(x)=\int_{0}^{x} \varphi(t) d t \tag{5}
\end{equation*}
$$

Proof. We shall prove only (4) since (3) can similarly be proved. We may assume that f satisfies a left Lipschitz condition since the other case follows immediately from this one (replacing f by $-f$). Now we extend f on R with period 1. Then it is easy to prove that the extended function f satisfies the left Lipschitz condition on the whole real line \boldsymbol{R} with constant L. First we shall prove that the inequality

