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In this note, we present two inequalities or the supremum norm and
the oscillation of a unction satisfying a one-sided Lipschitz condition on
the interval E= [0, 1] and having equal values at the end points. As special
cases o them we obtain two estimates for the -discrepancy of a sequence
of real numbers, with respect o a distribution unction satis2ying a
Lipschitz condition on E. The results generalize some inequalities of
LeVeque [3], Yurinskii [12], Niederreiter ([5], [6]), and Proinov ([7], [8]).

1. Definition 1. A real-valued unction f is said to satisfy the right
Lipschitz condition on E with a positive constant L i
( 1 ) f(x).--f(y)=L(x--y) or x, y e E with xy.
Analogously, f is said to satisfy the left Lipschitz condition if
( 2 ) f(x)--f(y)--L(x--y) or x, y e E with xy.
The function f is said to satisfy the one-sided Lipschitz condition on E
with constant L if either (1) or (2) holds.

It is easy to prove that i a unction satisfies a one-sided Lipschitz
condition on E, then it is a unction o bounded variation on E. For a
bounded unction f on E, we denote by IIfll and [f] its supremum norm
and its oscillation, respectively.

Theorem 1. Let a function f satisfy the one-sided Lipschitz condition
on E with constant L, and let f(0)--f(1) and f gL. Then for any non-
decreasing nonnegative function on [0, c),

,f ,)_L J: (If(x),)dxF((3)

and

(4) 2F(-[f]) gL 1 (If(x)l)dx,

where the function F is defined on [0, c) by

(5) F(x)::()d.
Proof. We shall prove only (4) since (3) can similarly be proved. We

may assume that f satisfies a left Lipschitz condition since the other case
ollows immediately rom this one (replacing f by --f). Now we extend

f on R with period 1. Then it is easy to prove that the extended unction

f satisfies the left Lipschitz condition on the whole real line R with constant
L. First we shall prove that the inequality


