20. Tightness Property for Symmetric Diffusion Processes

By Masayoshi TAKEDA Department of Mathematics, Faculty of Science, Osaka University

(Communicated by Kôsaku YOSIDA, M. J. A., March 14, 1988)

§1. Introduction. Let \mathcal{E}^n be a sequence of closable symmetric forms on $L^2(\mathbb{R}^a, m_n)$ with symmetric non-negative definite (in i, j) measurable coefficients $a_{i,j}^n$:

$$\mathcal{E}^{n}(f,g) = \frac{1}{2} \sum_{i,j=1}^{d} \int_{\mathbb{R}^{d}} a_{ij}^{n}(x) \frac{\partial f}{\partial x_{i}}(x) \frac{\partial g}{\partial x_{j}}(x) dm_{n}$$
$$\mathcal{D}[\mathcal{E}^{n}] = C_{0}^{\infty}(\mathbb{R}^{d})$$

where m_n are everywhere dense positive Radon measures and $C_0^{\infty}(\mathbb{R}^d)$ is the space of infinitely differentiable functions with compact support. We assume that there exists a positive constant c such that

$$\sup_{n} \sum_{i,j=1}^{d} a_{ij}^{n}(x) \xi_{i} \xi_{j} \leq c |\xi|^{2}$$

for all x and $\xi \in \mathbb{R}^{d}$. Set $\mathcal{E}_{1}^{n}(f,g) = \mathcal{E}^{n}(f,g) + (f,g)_{m_{n}}$ and denote the \mathcal{E}_{1}^{n} closure of C_{0}^{∞} by \mathcal{P}^{n} . Then we have a sequence of regular Dirichlet spaces $(\mathcal{E}^{n}, \mathcal{P}^{n})$ on $L^{2}(\mathbb{R}^{d}, m_{n})$ and symmetric diffusion processes $\mathbb{M}^{n} = (P_{x}^{n}, X_{t})$ associated with $(\mathcal{E}^{n}, \mathcal{P}^{n})$ (see [3]).

For the probability measure μ_n on \mathbb{R}^d , we define the probability measure $P_{\mu_n}^n$ on $C([0,\infty))$ as $P_{\nu_n}^n(\cdot) = \int P_x^n(\cdot) d\mu_n$, where $C([0,\infty))$ is the space of all continuous functions from $[0,\infty)$ into \mathbb{R}^d . We are concerned with the problem of finding conditions for a sequence $\{P_{\mu_n}^n\}$ to be tight.

§2. Statement of theorem. We consider the following conditions.

Condition 1. Diffusion processes M^n are conservative.

Condition 2. i) $\sup m_n(K) < \infty$ for any compact set K

ii)
$$\mu_n = \phi_n dm_n$$
 and $\sup \|\phi_n\|_{\infty} < \infty$

iii) $\{\mu_n\}$ is tight

Condition 3. For any T > 0 and R > 0

$$\sup_{n}\sum_{k=0}^{\infty}m_{n}(T_{R+k})l^{1/2}\left(\frac{k}{\sqrt{dcT}}\right)<\infty$$

where

$$T_p = \{x \in \mathbf{R}^a ; p \leq |x| < p+1\} \text{ and } l(a) = rac{1}{\sqrt{2\pi}} \int_a^\infty e^{-u^{2}/2} du du$$

Then, we have

Theorem. Under Conditions 1, 2 and 3, the sequence of probability measure $\{P_{\mu_n}^n\}$ is tight.

Remark 1. Under Condition 1 and Condition 2-i), ii), Lyons-Zheng [4]