# 19. On the Representation of the Scattering Kernel for the Elastic Wave Equation 

By Hideo Soga<br>Faculty of Education, Ibaraki University<br>(Communicated by Kôsaku Yosida, m. J. A., March 14, 1988)

Introduction. In Yamamoto [7] and Shibata and Soga [4] we have known that we can construct the scattering theory for the elastic wave equation corresponding to the theory for the scalar-valued wave equation formulated by Lax and Phillips [1, 2]. On Lax and Phillips' formulation Majda [3] obtained a representation of the scattering kernel (operator), which is very useful for consideration on the inverse scattering problems (cf. Majda [3], Soga [5, 6], etc.). In the present note we shall give the similar representation of the scattering kernel for the elastic wave equation considered in Shibata and Soga [4].
$\S$ 1. Main results. Let $\Omega$ be an exterior domain in $\boldsymbol{R}_{x}^{n}\left(x=\left(x_{1}, \cdots, x_{n}\right)\right)$ whose boundary $\partial \Omega$ is a compact $C^{\infty}$ hypersurface. Throughout this note we assume that the dimension $n$ is odd and $\geqq 3$. Let us consider the elastic wave equation

$$
\begin{cases}\left(\partial_{t}^{2}-\sum_{i, j=1}^{n} a_{i j} \partial_{x_{i}} \partial_{x_{j}}\right) u(t, x)=0 & \text { in } \boldsymbol{R} \times \Omega  \tag{1.1}\\ B u(t, x)=0 & \text { on } \boldsymbol{R} \times \partial \Omega \\ u(0, x)=f_{1}(x), \quad \partial_{t} u(0, x)=f_{2}(x) & \text { on } \Omega\end{cases}
$$

Here, $a_{i j}$ are constant $n \times n$ matrices whose ( $p, q$ )-component $a_{i p j q}$ satisfies

$$
\begin{align*}
& a_{i p j q}=a_{p i j q}=a_{j q i p}, \quad i, j, p, q=1,2, \cdots, n,  \tag{A.1}\\
& \sum_{i, p, j, q=1}^{n} a_{i p j q q_{j q} \varepsilon_{i p} \geqq \delta} \sum_{i, p=1}^{n}\left|\varepsilon_{i p}\right|^{2} \quad \text { for Hermitian matrices }\left(\varepsilon_{i j}\right), \tag{A.2}
\end{align*}
$$

(A.3) $\sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j}$ has characteristic roots of constant multiplicity

$$
\text { for } \xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \boldsymbol{R}^{n}-\{0\}
$$

and the boundary operator $B$ is of the form

$$
B u=\left.u\right|_{\partial \Omega} \quad \text { or }\left.\quad \sum_{i, j=1}^{n} \nu_{i}(x) a_{i j} \partial_{x_{j}} u\right|_{\partial \Omega},
$$

where $\nu=\left(\nu_{1}, \cdots, \nu_{n}\right)$ is the unite outer vector normal to $\partial \Omega$. We denote by $U(t)$ the mapping: $f=\left(f_{1}, f_{2}\right) \rightarrow\left(u(t, \cdot), \partial_{t} u(t, \cdot)\right)$ associated with (1.1), and by $U_{0}(t)$ the one associated with the equation in the free space ( $\Omega=\boldsymbol{R}^{n}$ ).

Under the assumptions (A.1)-(A.3) it has been proved in Shibata and Soga [4] that the wave operators $W_{ \pm}=\lim _{t \rightarrow \pm \infty} U(-t) U_{0}(t)$ are well defined and complete (cf. § 3 of [4]). Let $\left\{\lambda_{j}(\xi)\right\}_{j=1, \cdots, d}\left(\lambda_{1}<\cdots<\lambda_{d}\right)$ be the eigenvalues of $\sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j}$, and let $P_{j}(\xi)$ be the projection into the eigenspace of $\lambda_{j}(\xi)$. For the data $f=\left(f_{1}, f_{2}\right)(\in \mathcal{S})$ in the free space, let us set

$$
T_{0} f(s, \omega)=\sum_{j=1}^{a} \lambda_{j}(\omega)^{1 / 4} P_{j}(\omega)\left(-\lambda_{j}(\omega)^{1 / 2} \partial_{s}^{(n+1) / 2} \tilde{f}_{1}+\partial_{s}^{(n-2) / 2} \tilde{f}_{2}\right)\left(\lambda_{j}(\omega)^{1 / 2} s, \omega\right),
$$

