17. Single-point Blow-up for Semilinear Parabolic Equations in Some Non-radial Domains

By Yun-Gang CHEN*) and Takashi SUZUKI**)

(Communicated by Kôsaku Yosida, M. J. A., March 14, 1988)

§0. Introduction. In this note, we consider

(E)
$$\begin{pmatrix} u_t = \Delta u + f(u), & (t, x) \in (0, T) \times \Omega, \\ u = 0, & (t, x) \in (0, T) \times \partial \Omega, \\ u(0, x) = u_0(x), & x \in \overline{\Omega}. \end{cases}$$

Here $\Omega \subset \mathbb{R}^N$ $(N \ge 2)$ is a bounded domain with smooth boundary and the initial value $u_0 = u_0(x) \ge 0$ is sufficiently smooth, say, $u_0 \in C^1(\overline{\Omega}) \cap C_0(\overline{\Omega})$. The nonlinear term f(u) satisfies

(0.1) $f \in C^2(0,\infty) \cap C[0,\infty), f(s) > 0$ for s > 0.

Let u=u(t, x) be the classical solution of (E). Its existence time T is defined by

(0.2) $T = \sup \{\tau > 0 \mid u(t, x) \text{ is bounded in } [0, \tau] \times \Omega \}.$

It is well known that for a large class of f and initial value u_0 , the solution u(t, x) may blow up, i.e., $T < +\infty$ and

(0.3) $\overline{\lim_{t \uparrow T}} \| u(t, \cdot) \|_{L^{\infty}(\mathcal{G})} = +\infty.$

In this case we say that u=u(t,x) is a blow-up solution, and T is the blowup time (see, for instance [3], [4]).

Here, we consider the blow-up points in some non-radial domains and will give some single-point blow-up results under a weaker hypothesis than the radial symmetry or convexity for Ω .

Definition. The blow-up set, or the set of blow-up points of u = u(t, x) is defined as

 $S = \{x \in \overline{\Omega} \mid \text{there is a sequence } (t_n, x_n) \text{ in } (0, T) \times \Omega \text{ such that} \}$

 $t_n \uparrow T$, $x_n \rightarrow x$ and $u(t_n, x_n) \rightarrow \infty$ as $n \rightarrow +\infty$ },

and each point $x \in S$ is called a *blow-up* point of u(t, x).

By the definition, we can see that S is a closed set. The standing assumption throughout this note is that $f(\cdot)$ and u_0 is such that the solution blows up. For f we assume the following condition.

(F) There exists a function F = F(u) such that

(i)
$$F(s) > 0$$
, $F'(s) \ge 0$ and $F''(s) \ge 0$ for $s > 0$;

- (ii) $\int_{1}^{\infty} \frac{ds}{F(s)} < +\infty$;
- (iii) there is a constant $\sigma > 0$ such that $f'(s)F(s) f(s)F'(s) \ge \sigma F(s)F'(s)$ for s > 0.

This condition is originally introduced in [6]. It can be seen that

^{*)} Graduate School of Mathematics, University of Tokyo.

^{**&#}x27; Department of Mathematics, University of Tokyo.