16. Class Number One Problem for Real Quadratic Fields

(The conjecture of Gauss)

By Hideo Yokoi
Department of Mathematics, College of General Education, Nagoya University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1988)

The following conjecture of Gauss on the class number of real quadratic fields is well known :
$\left(G_{1}\right)$: There exist infinitely many real quadratic fields of class number one, or more precisely
$\left(G_{2}\right)$: There exist infinitely many real quadratic fields $Q(\sqrt{p})$ of class number one such that p is prime congruent to $1 \bmod 4$.

In relation to this conjecture of Gauss, the following conjecture of S. Chowla and analogous conjecture of Yokoi are known ${ }^{17}$:
$\left(C_{1}\right)$ (S. Chowla): Let D be a square-free rational integer of the form $D=4 m^{2}+1$ for natural number m. Then, there exist exactly 6 real quadratic fields $Q(\sqrt{ } D)$ of class number one, i.e. $\quad(D, m)=(5,1),(17,2),(37,3),(101,5),(197,7),(677,13)$.
$\left(C_{2}\right)$ (H. Yokoi) : Let D be a square-free rational integer of the form $D=m^{2}+4$ for natural number m. Then, there exist exactly 6 real quadratic fields $Q(\sqrt{D})$ of class number one,
i.e. $\quad(D, m)=(5,1),(13,3),(29,5),(53,7),(173,13),(293,17)$.

Concerning the conjectures $\left(C_{1}\right),\left(C_{2}\right)$, R. A. Mollin says ${ }^{2)}$: Conjecture $\left(C_{1}\right)$ was proved under the assumption of the generalized Riemann hypothesis in [6], and conjecture $\left(C_{2}\right)$ also can be proved under the same assumption in a similar way.

On the other hand, H. K. Kim, M. G. Leu and T. Ono ${ }^{3}$ recently proved that at least one of the two conjectures $\left(C_{1}\right),\left(C_{2}\right)$ is true and that for the other case there are at most 7 quadratic fields $Q(\sqrt{ } D)$ of class number one by using results of Tatuzawa [1], Yokoi [3] and by the help of a computer.

Let $\varepsilon_{D}=(1 / 2)\left(t_{D}+u_{D} \sqrt{D}\right)>1$ be the fundamental unit of the real quadratic field $Q(\sqrt{D})$ for a positive square-free integer D. Then, $\left(C_{1}\right)$ is a conjecture on real quadratic fields $Q(\sqrt{D})$ with $u_{D}=2$, and $\left(C_{2}\right)$ is a conjecture on real quadratic fields $Q(\sqrt{ } D)$ with $u_{D}=1$.

In this paper, we shall prove first the following theorem on real

[^0]
[^0]: 1) cf. S. Chowla and J. Friedlander [2] and H. Yokoi [3].
 2) cf. R. A. Mollin [4].
 3) cf. H. K. Kim, M. G. Leu and T. Ono [5].
