15. On the Erdös-Turán Inequality on Uniform Distribution. II

By Petko D. Proinov
Department of Mathematics, University of Plovdiv, Bulgaria
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1988)

This is continued from [1].
2. To prove Theorem 1 we need three lemmas.

Lemma 1. Let a function f satisfy the right Lipschitz condition on \boldsymbol{R} with constant L, and let Δ be a closed interval. Set $\delta=\|f\| / 2 L$, where $\|f\|$ denotes the supremum norm of f on Δ. Then there exists a real number a such that either

$$
\begin{equation*}
f(x+a) \geqq L(x+\delta) \quad \text { for all } x<\delta \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
f(x+a) \leqq L(x-\delta) \quad \text { for all } x>-\delta . \tag{6}
\end{equation*}
$$

Proof. By the assumption, it follows that f is a function of bounded variation on every closed interval. Hence, both limit values $f(x+)$ and $f(x-)$ exist for every $x \in \boldsymbol{R}$. Moreover, we have (7) $\quad f(x+) \leqq f(x) \leqq f(x-) \quad$ for all $x \in \boldsymbol{R}$.

Indeed, since f satisfies the right Lipschitz condition with constant L, we have

$$
f(x+t)-L t \leqq f(x) \leqq f(x-t)+L t
$$

for all $x \in \boldsymbol{R}$ and $t>0$. Passing to the limit in these inequalities as $t \rightarrow 0+$ we obtain (7).

Let us consider f on the closed interval Δ. Then from (7), it follows that there exists a point $b \in \Delta$ such that either $\|f\|=f(b-)$ or $\|f\|=-f(b+)$. Now set

$$
a= \begin{cases}b-\delta & \text { if }\|f\|=f(b-) \tag{8}\\ b+\delta & \text { if }\|f\|=-f(b+)\end{cases}
$$

We shall prove that the real number a defined by (8) satisfies the requirement of the lemma.

Suppose first that $\|f\|=f(b-)$. Then from the definition of δ, we conclude that $f(b-)=2 L \delta$. Now choose two real numbers y and t with $y<t<b$. Since f satisfies the right Lipschitz condition on \boldsymbol{R} with constant L,

$$
f(y) \geqq f(t)-L(t-y)
$$

Passing to the limit in this inequality as $t \rightarrow b$ - we obtain
(9) $\quad f(y) \geqq f(b-)-L(b-y)=2 L \delta-L(b-y)$.

Now let $x<\delta$. Then (8) implies that $x+a<b$. Hence, we can apply (9) with $y=x+a$. Thus, we arrive at

$$
f(x+a) \geqq 2 L \delta-L(b-a-x)=2 L \delta-L(\delta-x)=L(x+\delta),
$$

