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This is continued from [1].
2. To prove Theorem 1 we need three lemmas.
Lemma 1. Let a function f satisfy the right Lipschitz condition on

R with constant L, and let be a closed interval. Set 3--Itfll/2L, where

Ilfll denotes the supremum norm of f on . Then there exists a real
number a such that either
( 5 f(x+a)L(x+) for all x
or
( 6 ) f(x+a)L(x-) for all x>-.

Proof. By the assumption, it 2ollows that f is a 2unction of bounded
variation on every closed interval. Hence, both limit values f(x+) and
f(x--) exist for every x e R. Moreover, we have
7 ) f(x +) <=f(x)f(x --) or all x e R.

Indeed, since f satisfies the right Lipschitz condition with constant L, we

have
f(x+ t) Lt f(x) f(x t)+ Lt

for all x e R and $ >0. Passing to the limit in these inequalities as t-0/
we obtain (7).

Let us consider f on the closed interval A. Then from (7), it ollows
that there exists a point b e A such that either f f(b -) or f f(b +).
Now set

b it f f(b-),
( 8 ) a=

b+ if f f(b+ ).

We shall prove that the real number a defined by (8) satisfies the require-

ment of the lemma.
Suppose first that Ilfll=f(b-). Then from the definition of 8, we

conclude that f(b--)--2L. Now choose two real numbers y and t with
yt<b. Since f satisfies the right Lipsehitz condition on R with constant
L,

f(y)f(t)--L(t--y).
Passing to the limit in this inequality as t-b- we obtain

( 9 ) f(y)_f(b--)--L(b--y)=2L--L(b--y).
Now let x 6. Then (8) implies that x+a <b. Hence, we can apply (9)
with y=x+a. Thus, we arrive at

f(x -t- a)
_
2L L(b a x) 2L( L(( x) L(x -t- )


