Proc. Japan Acad., 64, Ser. A (1988)

13. On Pathwise Projective Invariance of Brownian Motion. I^(),*)

By Shigeo TAKENAKA Department of Mathematics, Nagoya University (Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1988)

Introduction. Brownian motion with parameter in Riemannian space was introduced by P. Lévy [3]. He also considered white noise representation of Brownian motion in connection with geometric structure of its parameter space. In line with his idea we start with the simplest case of usual 1-parameter Brownian motion. The parameter space is considered the projective space P^1 rather than R^1 .

In part I, we study an invariance property of the path space. This property is a reflection of the projective structure of P^1 . We also see that this invariance characterizes the Brownian motion between 1-parameter self-similar Gaussian processes.

In part II, the type of the group action which describes the above invariance will be determined as a *discrete series representation of index* 2 in term of the theory of unitary representation.

In part III, we will consider a generalization of the partially invariance in § 3. Proposition 4 will be extended to multi-parameter case. The Möbius group will appear in the invariance property.

§1. Projective invariance. A Gaussian system $\{B(t; \omega); t \in R\}$ is called a Brownian motion if it satisfies

- $(\mathcal{B}1) \quad B(0) \equiv 0,$
- (B2) $B(t)-B(s) \stackrel{\mathcal{L}}{=} N(0, |t-s|)$, the Gaussian law of mean 0 and variance |t-s|.

To fix the idea, take a continuous version

(B3) $B(t; \omega)$ is continuous in t including $t = \infty$ for any ω , that is $\lim_{|t| \to \infty} \frac{1}{t} B(t) = 0.$

It is easy to show that the processes $B_{1,s}(t)$, $B_{2,u}(t)$ and $B_{3}(t)$ below are Brownian motions in the above sense;

- $(\mathcal{I}1) \quad B_{1,s}(t) \equiv B(t+s) B(s), s \in \mathbf{R},$
- $(\mathcal{T}2) \quad B_{2,u}(t) \equiv e^{-u/2}B(e^u t), \ u \in \mathbf{R},$
- $(\mathcal{T}3) \quad B_{\mathfrak{s}}(t) \equiv tB\left(\frac{-1}{t}\right).$

It is natural to ask what group is generated by the transforms $(\mathcal{T}1)$ - $(\mathcal{T}3)$ acting on $B(t; \omega)$.

^{†)} This research is supported in part by Grant-in-Aid for Scientific Research 62540149, 1987 from the Ministry of Education, Science, and Culture of Japan.

^{*)} Dedicated to Professor T. HIDA on his 60th birthday.