13. On Pathwise Projective Invariance of Brownian Motion. $\mathbf{I}^{(\dagger), *)}$

By Shigeo Takenaka
Department of Mathematics, Nagoya University

(Communicated by Kôsaku Yosida, m. J. A., Feb. 12, 1988)

Introduction. Brownian motion with parameter in Riemannian space was introduced by P. Lévy [3]. He also considered white noise representation of Brownian motion in connection with geometric structure of its parameter space. In line with his idea we start with the simplest case of usual 1-parameter Brownian motion. The parameter space is considered the projective space \boldsymbol{P}^{1} rather than \boldsymbol{R}^{1}.

In part I, we study an invariance property of the path space. This property is a reflection of the projective structure of \boldsymbol{P}^{1}. We also see that this invariance characterizes the Brownian motion between 1-parameter self-similar Gaussian processes.

In part II, the type of the group action which describes the above invariance will be determined as a discrete series representation of index 2 in term of the theory of unitary representation.

In part III, we will consider a generalization of the partially invariance in §3. Proposition 4 will be extended to multi-parameter case. The Möbius group will appear in the invariance property.
\S 1. Projective invariance. A Gaussian system $\{B(t ; \omega) ; t \in \boldsymbol{R}\}$ is called a Brownian motion if it satisfies
$(\mathscr{B 1)} \quad B(0) \equiv 0$,
($\mathcal{B 2) ~} \quad B(t)-B(s) \stackrel{\substack{\varepsilon}}{=} N(0,|t-s|)$, the Gaussian law of mean 0 and variance $|t-s|$.
To fix the idea, take a continuous version
$(\mathscr{B} 3) B(t ; \omega)$ is continuous in t including $t=\infty$ for any ω, that is

$$
\lim _{|t| \rightarrow \infty} \frac{1}{t} B(t)=0 .
$$

It is easy to show that the processes $B_{1, s}(t), B_{2, u}(t)$ and $B_{3}(t)$ below are Brownian motions in the above sense ;
(I1) $\quad B_{1, s}(t) \equiv B(t+s)-B(s), s \in \boldsymbol{R}$,
(I2) $\quad B_{2, u}(t) \equiv e^{-u / 2} \boldsymbol{B}\left(e^{u} t\right), u \in \boldsymbol{R}$,

$$
\begin{equation*}
B_{3}(t) \equiv t B\left(\frac{-1}{t}\right) \tag{I3}
\end{equation*}
$$

It is natural to ask what group is generated by the transforms (II)(I3) acting on $B(t ; \omega)$.

[^0]
[^0]: ${ }^{\dagger}$ This research is supported in part by Grant-in-Aid for Scientific Research 62540149, 1987 from the Ministry of Education, Science, and Culture of Japan.
 *) Dedicated to Professor T. Hida on his 60th birthday.

