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111. Selberg Trace Formula for Odd Weight. II
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(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1988)

This is continued from [0].

§4. A dimension formula of the space of cusp forms of weight one.
First we consider the space S,.(I", X) which consists of C* valued holomorphic
functions satisfying :

{1) F|[T],=xT)F for Tel;
2) f F()F@) yrde<oo,
I'\H

where F|[T],,=F(T-2)j(T,2)-™. The connection of this space S,(I", %) and
Selberg eigenspace is given by the next lemma.
Lemma 1.

_C,,<m+2, -Z—(l +%>>=y<m”ﬂ/ exp (—«/ti(m+2)¢> S5 1),

.[’,(m, %—(1 +%)> =y ™ exp (——«/?imgb) S_(, ).

Lemma 2. Suppose
qu%(l-y Z" ), then dim L,(m, ) =dim _L,(m+2, 2).
Using these two lemmas, we can calculate the difference between the
dimension of S,,(I", ) and that of S,_,(I", ¥), and induce the explicit dimen-
sion formula for m>2. In the case of weight one, we have

Theorem 3.
dim (S)l(l_’, X)‘—dim (5’1(11, 7)
- Tr (A(R))
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Now we treat the trace formula in a different way. Assume that i(r)
=h(r,s) is a meromorphic function of » and s, and the trace formula is
analytically continued to the whole s-plane. Let h(r, s) has a pole s=m/2
when r=,—=;—1/4 and 1=(m/2)(m/2—1), and h(r,s) is holomorphic at
s=m/2 whenever r+, —;—1/4. This situation can be realized by vari-
ous functions of » and s. Especially we can take the Selberg kernel
@/ +(s—1/2))— 1/ (*+pY), where 0. Let us compare the residues at
s=m/2 of both sides. If m>3, we get the same formula of Theorem 3. In
this case, the hyperbolic contribution vanishes because the Selberg zeta
function is holomorphic at s=m/2. But if m=1, we have



