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1. Statement of the problem. Let us consider a two-phase Stefan
problem described as follows" Find a function u-u(t, x) on Q--(O, T)
(0, 1), 0(Tc, and a curve x--l(t), 0/1, on [0, T] such that

in Qi,
(0.1) O(u)--a(u)+h(t,x)=

f inQ?,
h(t, x) g(u(t, x)) or a.e. (t, x) e Q,
Qi ={(t, x) OtT, Oxl(t)}, Q7 ={(t, x) OtT, l(t)xl},
[u(t, /(t))=0 or

(0.2)
[/’(t)=-a(u(t, l(t)-))+a(u(t, l(t)+)) or a.e. t e (0, T), /(0)=/0,

(0.3) (u(0, x))=v0(x) for 0<xl,

[a(u(t, 0+)) e b(u(t, 0)) for a.e. t e (0, T),
(0.4)

I--a(u(t, 1--)) e 3b(u(t, 1)) for a.e. t e (0, T),
where p" RR is a non-decreasing Yunction and a" R--+R is a continuous
Yunction g(o) is a maximal monotone graph in RX R; f0, f are functions
on Q l0 is a number with 0< l0 < 1 and v0 is a function on the interval (0, 1)

is a proper 1.s.c. convex function on R and 3b is its sub-for i=0, 1, b,
differential. We note that the expression (0.4) includes various boundary
conditions such as Dirichlet, Neumann and Signorini boundary conditions.

In the case when a(r)=r and g(r)--O, Crowley [2] proved the unique-
hess o solution to the multi-dimensional problem in a weak fcrmulation
and recently Cannon-Yin [1] established an existence result for (0.1)-(0.4)
under the additional restriction that p is strictly increasing in R.

In this paper, we suppcse that p is non-decreasing, and we are very
interested in the additional heat source term g(u), which causes unusual
behavior of the solution {u, 1}. For instance, as is seen from the following
example, 90(t) ={x e [0, 1] u(t, x)=0} has psitive linear measure. This
region/20(t) is called the mushy region and was analized by M. Bertsch, P.
de Mottoni and L. A. Peletier [1, 2].

Example. Suppose that T=3,

!-1 forr>l,
p(r) for ]rl_<_ 1,

+1 lorrY--l,

[ -11g()=sign(r)= ,1]

a(r) =r,

for rO,
for r--0
for r<0,

fo=f =0,


