108. Two-Phase Stefan Problems for ParabolicElliptic Equations

By Toyohiko Aiki
Department of Mathematics, Graduate School of Sciences, Chiba University
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1988)

1. Statement of the problem. Let us consider a two-phase Stefan problem described as follows: Find a function $u=u(t, x)$ on $Q=(0, T) \times$ $(0,1), 0<T<\infty$, and a curve $x=l(t), 0<l<1$, on $[0, T]$ such that

$$
\begin{align*}
& \rho(u)_{t}-a\left(u_{x}\right)_{x}+h(t, x)=\left[\begin{array}{ll}
f_{0} & \text { in } Q_{l}^{+} \\
f_{1} & \text { in } Q_{l}^{-}
\end{array}\right. \tag{0.1}\\
& h(t, x) \in g(u(t, x)) \text { for a.e. }(t, x) \in Q \\
& Q_{l}^{+}=\{(t, x) ; 0<t<T, 0<x<l(t)\}, Q_{l}^{-}=\{(t, x) ; 0<t<T, l(t)<x<1\}, \\
& {\left[\begin{array}{ll}
u(t, l(t))=0 \quad \text { for } 0 \leqq t \leqq T \\
l^{\prime}(t)=-a\left(u_{x}(t, l(t)-)\right)+a\left(u_{x}(t, l(t)+)\right) \quad \text { for a.e. } t \in(0, T), l(0)=l_{0} \\
\rho(u(0, x))=v_{0}(x) \quad \text { for } 0 \leqq x \leqq 1, \\
{\left[\begin{array}{ll}
a\left(u_{x}(t, 0+)\right) \in \partial b_{0}^{t}(u(t, 0)) & \text { for a.e. } t \in(0, T) \\
-a\left(u_{x}(t, 1-)\right) \in \partial b_{1}^{t}(u(t, 1)) & \text { for a.e. } t \in(0, T)
\end{array}\right.}
\end{array}, l\right.}
\end{align*}
$$

where $\rho: R \rightarrow R$ is a non-decreasing function and $a: R \rightarrow R$ is a continuous function; $g(\cdot)$ is a maximal monotone graph in $R \times R ; f_{0}, f_{1}$ are functions on $Q ; l_{0}$ is a number with $0<l_{0}<1$ and v_{0} is a function on the interval $(0,1)$; for $i=0,1, b_{i}^{t}$ is a proper l.s.c. convex function on R and ∂b_{i}^{t} is its subdifferential. We note that the expression (0.4) includes various boundary conditions such as Dirichlet, Neumann and Signorini boundary conditions.

In the case when $a(r)=r$ and $g(r) \equiv 0$, Crowley [2] proved the uniqueness of solution to the multi-dimensional problem in a weak fcrmulation and recently Cannon-Yin [1] established an existence result for (0.1)-(0.4) under the additional restriction that ρ is strictly increasing in R.

In this paper, we suppose that ρ is non-decreasing, and we are very interested in the additional heat source term $g(u)$, which causes unusual behavior of the solution $\{u, l\}$. For instance, as is seen from the following example, $\Omega_{0}(t):=\{x \in[0,1] ; u(t, x)=0\}$ has positive linear measure. This region $\Omega_{0}(t)$ is called the mushy region and was analized by M. Bertsch, P. de Mottoni and L. A. Peletier [1, 2].

Example. Suppose that $T=3$,

$$
\begin{aligned}
& \rho(r)=\left[\begin{array}{ll}
r-1 & \text { for } r>1, \\
0 & \text { for }|r| \leqq 1,
\end{array} \quad a(r)=r,\right. \\
& r+1 \\
& \text { for } r<-1, \\
& g(r)=\operatorname{sign}(r)=\left[\begin{array}{ll}
1 & \text { for } r>0, \\
{[-1,1]} & \text { for } r=0, \\
-1 & \text { for } r<0,
\end{array} \quad f_{0}=f_{1}=0,\right.
\end{aligned}
$$

