106. Spectral Resolution of a Certain Summation of Series

By Shigeru Maeda
Department of Industrial Management, Osaka Institute of Technology
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1988)

1. Introduction. This paper deals with the spectral resolution of a certain summation of series, the final aim being to give a method of solving recurrences involving the summation by means of its spectral decomposition. Let L denote a real linear space composed of all sequences of real numbers, and a small letter, for example, a is used to mean its element $\left\{a_{1}, a_{2}, \cdots\right\}\left(a_{i} \in R\right)$. Our summation T_{d} is a linear transformation on L defined by

$$
\begin{equation*}
T_{d}: a \longmapsto b, \quad b_{i}=\frac{1}{d^{i}} \sum_{j=1}^{i}\binom{i}{j}(d-1)^{i-j} a_{j} \quad(i=1,2, \cdots), \tag{1}
\end{equation*}
$$

where d is a positive number. This summation of series is closely related to the Euler summation [1].
2. Spectral resolution of $T_{d^{*}}$. In this section, we prove that $\left\{T_{a}\right\}_{a>0}$ is a representation of a multiplicative group, and derive the spectral resolution with the use of its group property. Let us start by showing a lemma.

Lemma 1. Let d_{1}, d_{2} and d be positive numbers, and we have

$$
T_{d_{1}} \circ T_{d_{2}}=T_{d_{1} d_{2}}, \quad T_{1}=I, \quad\left(T_{d}\right)^{-1}=T_{1 / d}
$$

Proof. Suppose that

$$
b_{i}=\frac{1}{d_{2}^{i}} \sum_{j=1}^{i}\binom{i}{j}\left(d_{2}-1\right)^{i-j} a_{j} \quad \text { and } \quad c_{k}=\frac{1}{d_{1}^{k}} \sum_{i=1}^{k}\binom{k}{i}\left(d_{1}-1\right)^{k-i} b_{i} .
$$

Then, a slight calculation leads to

$$
c_{k}=\frac{1}{\left(d_{1} d_{2}\right)^{k}} \sum_{j=1}^{k}\binom{k}{j}\left(d_{1} d_{2}-1\right)^{k-j} a_{j} .
$$

which proves $T_{d_{1}} \circ T_{d_{2}}=T_{d_{1} d_{2}}$. The remaining two are obvious.
This lemma shows that each T_{d} is a non-singular transformation and further the family $\left\{T_{a}\right\}_{d>0}$ is a representation on L of a Lie group ($\left.R^{+}, x\right)$. Exchange the parameter d for t subject to $d=e^{t}$ and calculate $d /\left.d t\left(T_{d}[a]\right)\right|_{t=0}$ formally. Then, we have the formal generating operator of T_{d} as follows;

$$
\begin{equation*}
-a_{1} \frac{\partial}{\partial a_{1}}+\left(2 a_{1}-2 a_{2}\right) \frac{\partial}{\partial a_{2}}+\cdots+\left(n a_{n-1}-n a_{n}\right) \frac{\partial}{\partial a_{n}}+\cdots \tag{2}
\end{equation*}
$$

For the time being, discussion is made on an m-dimensional linear space \bar{L} which is of the first m terms $\bar{a}=\left\{a_{1}, \cdots, a_{m}\right\}$ of every element of L. It is easy to see from the definition (1) that the action of T_{d} can be restricted on \bar{L}, whose restriction we denote by \bar{T}_{d}. Then, \bar{T}_{d} gives an R^{+}-action on \bar{L} and its generator is expressed as a sum of first m components of (2). Since \bar{T}_{a} is a linear transformation, it is expressed as an m-th order matrix, which is obtained by means of the generator as follows:

