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1. Introduction. In the C~ category the well-posedness of the
Cauchy problem for hyperbolic operators depends in general on the behav-
iour of the lower order terms. When the characteristic roots are at most
double, necessary and (almost) sufficient conditions have been given by
Ivrii-Petkov [5], Ivrii [4] and Hormander [2]. For higher order multi-
plicities results on the (microlocal) Cauchy problem have been proved by
Bernardi [1] in the involutive case and by Nishitani [6] in the ‘“effectively”
hyperbolic case. In comparison with these last two cases the Levi condi-
tions in a non-involutive and ‘“non-effectively” hyperbolic situation seem to
be much more involved and that is the reason why we restricted ourselves
to multiplicity of order three.

Let us now introduce our notations. Let QCR"*!' an open subset,
X=Zy, Xy + -+, T) €2, D,;=(1/10,,, ]=0, -, n, x=(x, ). Let P(x,D,)=
P,(x,D,)+P,_(x,D,)+---, be a hyperbolic differential operator of order
m. We denote by I, p € 2 X R\ {0}, the hyperbolicity cone of P in p and by
I'; the polar of " with respect to the symplectic two-form ¢=dé Nde=do, o
the canonical one-form. See [7] for the definition of I"',. We recall the defi-
nition of the subprincipal symbol of P: P;,_,(x, &)=P,_,(x, )+ (1/2) > 3_,9%,,
(2, ). It is invariantly defined at double characteristic points of p,,.
If q is a hyperbolic operator with double characteristics we note by F, the
fundamental matrix of q,, the principal symbol of ¢, and by Tr*F, =3 2,,
where +1i2;,esp(F). See [3] for precise definitions. We now state our
results:

2. Results. We shall make the following assumptions on P.

H1) The principal symbol of P, p,(x, &) is hyperbolic with respect to &,.

H2) The characteristic roots of & —P,(z, &, &) have multiplicities at
most of order 3 and the triple characteristic set 3={(x, &) € 2 X R"\ {0}
D, &) =dp, (%, ) =d’p,(x, £)=0} is a C~ manifold such that rank ¢|;=
const and o does not vanish identically on T'2.

LetpeX:

H3), Denote by T,(2x R"\{0}) 2 62—P,, ,(6z) the localization of P, at
o (see e.g. [7]). Then

(i) P, (02)=L,(62)Q,(02) where L,(62)=0¢,—1,(0z, 6&"), I, being a real
linear form in (6z, 6&).

(i) Q.(02) is a real hyperbolic quadratic form such that:



