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1. Introduction. Our aim is to extend our previous work [2] and
establish some uniqueness results for spectral and evolutional inverse prob-
lems of multi-dimensional space variables. Thus, let 2 CR" be a bounded
domain with smooth boundary 92 and Pu=V-(aVu)+cu be a second order
formally self-adjoint uniformly elliptic differential operator with smooth
coefficients a=(a,,(x)) and c=c(x) on 2. We consider the parabolic initial
boundary value problem

(1) %:Pu(in%(o,oo)), U)p—y=0, g”bi —F(, t),

Vplon
where 9/0vp=2, ,v,0, ()@ /0x,), v=(v,,) being the outer unit normal vector
on 2. Our concern is to determine the coefficients a=(a,,) and ¢ through
the boundary input F = f(&, £) and output u=u(&,t) (e l,0<t<T), where
T>0 and ['Co with |I'|>0. Hence let Q be a similar elliptic operator and
take the equation

(2) D _Qu(in 20, ), vl=0, V| =F(,1).
ot g |ag

Then, our uniqueness question is formulated as follows: Does

(3) v D=uE,t) (el 0<t<T)

imply Q=P?

2. Reduction to spectral problems. Let P, and Q, be the realiza-
tions in X=L*Q2) of the differential operators P and Q under the Neumann
boundary conditions 4/dvy.=d/dv,.=0, respectively. The eigenvalues and
eigenfunctions of —P, and —Q, are denoted by {2}, {z;} (— o0 <3, <2< ---
=400, —oo Ly <pp< - —+00) and {o}, (¥} (¢slley=IVllzsy=1), re-
spectively. Then, supposing F(¢, t)=nr(®)f(&) with h=£0, we can deduce
(e.g. [2]) from (3) that
(4) r(&, t)=s(,t) (el 0<t<o),

where 7(z, t)=73, e ¥p,(x) Lg 0,8 ) (©)do; and sz, O)=>]; e " () L , &)

- f(&)do,. Taking F(&, t)=F (&, t)=h,(t) f,(§) with h,=0for [ e S, we suppose
the following condition, where J,={j|2,=2} and L,={j|y,=2} for 2e R:
(5) The matrices (@;);cs;1cs and (8;),c1;1es are both of full-rank when

J,#¢ or L,#+¢, where 05;1=‘fw 0, (&) f(&)ds, and .sz:'LQ V(&) f(&)da,.



