101. A Construction of Negatively Curved Manifolds

By Koji Fujiwara
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., Nov. 14, 1988)

§ 1. Introduction. Let V be a complete Riemannian manifold with $-b<K<-a<0$ and $\operatorname{vol}(V)<\infty$. Then it is known that each end of V is an infranilmanifold ([1], [2]).

But if we change the condition $-b<K<-a<0$ to $-b<K<0$, then the conclusion does not hold in general. In this paper we will give a counterexample; if the dimension is bigger than three, there is a complete manifold V with $-b<K<0$ and $\operatorname{vol}(V)<\infty$ such that the end is not an infranilmanifold, and in the case that the dimension is three, the end is a torus.

The author would like to thank Prof. Ochiai for his advice and constant encouragement and Dr. Fukaya who suggested this problem.
§2. Theorem and its proof. Theorem. Let V be a closed manifold with $K \equiv-1$ and W a closed totally geodesic submanifold of codimension 2 in V.

Then $V \backslash W$ admits a complete metric with $-a<K<0$ and $\operatorname{vol}(V \backslash W)$ $<\infty$, where $a>0$.

Remark 1. A pair (V, W) with the above property exists.
Remark 2. In this theorem, the end of $V \backslash W$ is a S^{1}-bundle over a hyperbolic manifold W, which is not an infranilmanifold.

Proof. Let $\sigma=\operatorname{inj}(W ; V)$, and take a σ-neighborhood U of W in V. We introduce a polar coordinate (w, θ, r) on U. Then $U=W \times S^{1} \times(0, \sigma)$ and we can write the hyperbolic metric g_{V} of V as follows on U ([4], [3]),
(1) $\quad g_{V}=\cosh ^{2}(r) g_{W}+\sinh ^{2}(r) d \theta^{2}+d r^{2} \quad(0 \leq \theta \leq 2 \pi, 0 \leq r \leq \sigma)$
where g_{W} denotes the induced metric on W.
We are going to change the metric g_{V} to a new metric $h_{V^{\prime}}$ on $V^{\prime}=V \backslash W$ as follows. Using a positive function $f(r)$, we set
(2) $\quad h_{V^{\prime}}=\cosh ^{2}(r) g_{W}+\sinh ^{2}(r) d \theta^{2}+f^{2}(r) d r^{2} \quad(0 \leq \theta \leq 2 \pi, 0 \leq r \leq \sigma)$.

To choose a suitable function $f(r)$, we compute the sectional curvature K_{h} of the metric $h_{V^{\prime}}$. First, note that a vector field ξ on W naturally extends to a vector field on U, and we also denote it by ξ. The Riemannian connection V of $h_{V^{\prime}}=\langle$,$\rangle is given as follows, where D$ denotes the Riemannian connection on W, and ξ, ζ, \cdots denote vector fields on W or their extentions to U.

$$
\left\{\begin{array}{l}
\nabla_{\xi} \zeta=D_{\xi} \zeta-\tanh (r)\langle\xi, \zeta\rangle \frac{\partial}{\partial r} \\
\nabla_{\xi} \frac{\partial}{\partial \theta}=\nabla_{\partial / \partial \theta \xi}=0
\end{array}\right.
$$

