101. A Construction of Negatively Curved Manifolds

By Koji FUJIWARA

Department of Mathematics, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 14, 1988)

§ 1. Introduction. Let V be a complete Riemannian manifold with -b < K < -a < 0 and $vol(V) < \infty$. Then it is known that each end of V is an infranilmanifold ([1], [2]).

But if we change the condition -b < K < -a < 0 to -b < K < 0, then the conclusion does not hold in general. In this paper we will give a counter-example; if the dimension is bigger than three, there is a complete manifold V with -b < K < 0 and vol $(V) < \infty$ such that the end is not an infranilmanifold, and in the case that the dimension is three, the end is a torus.

The author would like to thank Prof. Ochiai for his advice and constant encouragement and Dr. Fukaya who suggested this problem.

§ 2. Theorem and its proof. Theorem. Let V be a closed manifold with $K \equiv -1$ and W a closed totally geodesic submanifold of codimension 2 in V.

Then $V \setminus W$ admits a complete metric with -a < K < 0 and $\operatorname{vol}(V \setminus W) < \infty$, where a > 0.

Remark 1. A pair (V, W) with the above property exists.

Remark 2. In this theorem, the end of $V\backslash W$ is a S^i -bundle over a hyperbolic manifold W, which is not an infranilmanifold.

Proof. Let $\sigma = \inf(W; V)$, and take a σ -neighborhood U of W in V. We introduce a polar coordinate (w, θ, r) on U. Then $U = W \times S^1 \times (0, \sigma)$ and we can write the hyperbolic metric g_V of V as follows on U ([4], [3]),

(1)
$$g_v = \cosh^2(r)g_w + \sinh^2(r)d\theta^2 + dr^2$$
 $(0 \le \theta \le 2\pi, 0 \le r \le \sigma)$ where g_w denotes the induced metric on W .

We are going to change the metric g_v to a new metric $h_{v'}$ on $V'=V\setminus W$ as follows. Using a positive function f(r), we set

$$(2) h_{v'} = \cosh^2(r)g_w + \sinh^2(r)d\theta^2 + f^2(r)dr^2 (0 \le \theta \le 2\pi, \ 0 \le r \le \sigma).$$

To choose a suitable function f(r), we compute the sectional curvature K_h of the metric $h_{V'}$. First, note that a vector field ξ on W naturally extends to a vector field on U, and we also denote it by ξ . The Riemannian connection V of $h_{V'} = \langle \ , \ \rangle$ is given as follows, where D denotes the Riemannian connection on W, and ξ, ζ, \cdots denote vector fields on W or their extentions to U.

$$\begin{bmatrix} \boldsymbol{V}_{\boldsymbol{\xi}} \boldsymbol{\zeta} \! = \! \boldsymbol{D}_{\boldsymbol{\xi}} \boldsymbol{\zeta} \! - \! \tanh \left(\boldsymbol{r} \right) \! \left\langle \boldsymbol{\xi}, \boldsymbol{\zeta} \right\rangle \! \frac{\partial}{\partial \boldsymbol{r}} \\ \boldsymbol{V}_{\boldsymbol{\xi}} \! \frac{\partial}{\partial \boldsymbol{\theta}} \! = \! \boldsymbol{V}_{\boldsymbol{\theta}/\boldsymbol{\theta}} \boldsymbol{\xi} \! = \! \boldsymbol{0} \end{bmatrix}$$