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Introduction. T2 isocompact wM spaces behave well like T2 paracom-
pact M spaces. For example, if f" X-Y is a closed, continuous map of a
T. isocompact wM space X onto Y, then Y-- U n>0 Y, where, for each n> 1,
Y is discrete in Y and f-(y) is compact for each y e Y0. As such, we in-
vestigate some interesting properties of such spaces and their images under
nice maps. Refer [5], [1], [4], [2] and [3] respectively, for the notions of
q, point countable and countable type, wM, isocompactness, and quasi-G
diagonal.

Main section. Theorem 1. ( A T1 space X of point countable type
is a q space. (ii) A regular isocompact q space X is point countable type.

Proof of (i).. Let x e X and K be a compact subset of X of countable
character with x e K. Let (U ]n> 1} be a decreasing local base at K. To
claim that {U} is a q sequence at x, let x e U for each n. Suppose
does not cluster. Then, D={xnlnl} is closed. Assume KD----O. Then,
X--D is an open nhd of K. Since, UX-D for each n, we have a con-
tradiction.

Poof of (ii). Let x e X and (U) be a q sequence at x with n+Un
for each n. Let C(x)= U. It follows that C(x) is of countable charac-
ter and x e C(x). Therefore X is of point countable type. Q.E.D.

Theorem 2. If a regular space X with quasi-G diagonal is a q space
or a space of point countable type, then the space is first countable.

Proof. By the Theorem 1 (i), X is a q space in either case. Let (U}n
be a quasi-G diagonal sequence. Let x e X, (G}n be a q sequence at x and
(n} be the strictly increasing sequence of natural numbers with x e
St(x, cU)= (U e cUlx e U), iff n=n for some k<n. By induction, we
can obtain a sequence (H} of open sets with x H+H+H]G+
U+, for each m, where x e U e cU. It follows that (H m> 1} is a local
base at x. Q.E.D.

Corollary 2.1. If a T2 wM space with quasi-G diagonal is a quotient
image of a locally compact, separable and metrizable space, then the space
is locally compact, separable and metrizable.

Proof. Apply the Theorem 2 and a result of A. H. Stone [7]. Q.E.D.
Theorem 3. A T2 isocompact wM space X is countable type.

Proof. Let (U} be a decreasing wM sequence and KcX be compact.
Let ff/ be a finite subcollection of cU with KW= U. Let cf/ be an
open collection with KU such that q=(WI W e q/F;} refines


