89. Decreasing Streamlines of Solutions and Spectral Properties of Linearized Operators for Semilinear Elliptic Equations

By Takashi Suzuki
Department of Mathematics, Faculty of Science, Tokyo Metropolitan University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 14, 1988)

§1. Introduction. Let $\Omega \subset \boldsymbol{R}^{N}$ be a bounded domain with a smooth boundary $\partial \Omega$ and $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a C^{1} function. We consider the semilinear elliptic equation
(1)

$$
-\Delta u=f(u), \quad u>0(\text { in } \Omega), \quad u=0(\text { on } \partial \Omega)
$$

Then the linearized operator around the solution $u=u(x) \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ is given by $A \equiv A(u)=-\Delta-f^{\prime}(u)$ in $L^{2}(\Omega)$ with $D(A)=H_{0}^{1} \cap H^{2}(\Omega)$. In the previous work [1], we have given some streamlines in Ω along which the solution decreases, when Ω is a symmetric domain in \boldsymbol{R}^{2}. There, we restricted ourselves to the mild solution, that is, the case when the second eigenvalue $\mu_{2}=\mu_{2}(u)$ of $A=A(u)$ is positive. In this article, we shall note that conversely, the decreasing streamlines of the solution contain some information about the eigenvalues of $A(u)$.

Thus, we suppose that the domain is the unit ball: $\Omega=\{|x|<1\} \subset \boldsymbol{R}^{N}$. Then from [5], every solution $u=u(x)$ of (1) is radial: $u=u(|x|)$ and $u_{r}<0$ for $0<r=|x|<1$. Therefore, the set of eigenvalues $\sigma(u)$ of $A(u)$ is divided as $\sigma(u)=\cup_{m=0}^{\infty} \sigma_{m}(u)$ according to the principle of separation of variables. Namely, let $\left\{\rho_{m}\right\}_{m=0}^{\infty}\left(0=\rho_{0}<\rho_{1}<\rho_{2}<\cdots\right)$ be the eigenvalues of $-\Lambda$, where Λ denotes the Laplace-Beltrami operator on $S^{N-1}=\{|x|=1\}$. In fact we have $\rho_{m}=m(2 \nu+m)$, where $2 \nu=N-2$. Further, multiplicity κ_{m} of ρ_{m} (and hence that of $\mu \in \sigma_{m}(u)$) is as follows: for $N=2$ we have $\kappa_{m}=1(m=0)$ and $\kappa_{m}=2$ ($m \geqq 1$) ; for $N>2$ we have $\kappa_{m}=(2 m+N-2)(m+N-3)!/(N-2)!m!$ (see, e.g. [9]). Then $\sigma_{m}(u)$ denotes the set of eigenvalues of the ordinary differential operator $A_{m}(u)=-\left(d^{2} / d r^{2}\right)-((N-1) / r)(d / d r)-c(r)+\left(\rho_{m} / r^{2}\right)$ with $\left.(d / d r) \cdot\right|_{r=0}$ $=\left.\cdot\right|_{r=1}=0$, where $c(r)=f^{\prime}(u)$.

Now, for these sets $\sigma_{m}(u)$ ($m=0,1,2, \cdots$), we claim the following, where $\boldsymbol{R}_{+}=(0, \infty)$:

Theorem. If $f\left(\boldsymbol{R}_{+}\right) \subset \boldsymbol{R}_{+}$, then $\sigma_{m}(u) \cap(-\infty, 0]=\phi$ for $m \geqq 1$. In particular, $\operatorname{dim} \operatorname{Ker} A(u)$ is at most 1 for any solution u on the ball $\Omega=\{|x|<1\}$ $\subset \boldsymbol{R}^{N}$, provided that $f\left(\boldsymbol{R}_{+}\right) \subset \boldsymbol{R}_{+}$.
§2. Proof of Theorem. Set $\sigma_{m}(u)=\left\{\mu_{j}^{m} \mid j=0,1,2, \cdots\right\}$ with $-\infty<$ $\mu_{0}^{m}<\mu_{1}^{m}<\cdots$. Since $\rho_{m^{\prime}}>\rho_{m}$ if $m^{\prime}>m$, we have $\mu_{0}^{1}<\mu_{0}^{2}<\cdots$ and hence we have only to prove that $\mu_{0}^{1}>0$.

The eigenfunction φ of $A(u)$ corresponding to μ_{0}^{1} is of the form $\varphi(x)=$

