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1. Introduction. Let 9cR be a bounded domain with a smooth
boundary 3/2 and f" R--R be a C function. We consider the semilinear
elliptic equation
(1) -Au= f(u), uO (in 9), u=O (on 39).
Then the linearized operator around the solution u--u(x)e C(9) C()is
given by A-A(u)=-A-f’(u) in L(9) with D(A)=HH(2). In the pre-
vious work [1], we have given some streamlines in/2 along which the solu-
tion decreases, when/2 is a symmetric domain in R. There, we restricted
ourselves to the mild solution, that is, the case when the second eigenvalue
/.=/2(u) of A=A(u) is positive. In this article, we shall note that con-
versely, the decreasi’ng streamlines of the solution contain some informa-
tion about the eigenvalues of A(u).

Thus, we suppose that the domain is the unit ball" 9={Ixll}cR
Then from [5], every solution u--u(x) of (1) is radial" u=u(Ixl)and UrO
for 0r--Ix[l. Therefore, the set of eigenvalues a(u) of A(u) is divided
as a(u)= [2=0a(u) according to the principle of separation of variables.
Namely, let (p}=0 (O--popp2.. ") be the eigenvalues of --/, where
denotes the Laplace-Beltrami operator on S-={]xl=l}. In fact we have
p=m(2,+m), where 2,=N-2. Further, multiplicity of p (and hence
that of g e a(u)) is as follows" for N=2 we have =1 (m=0)and =2
(m_ 1);for N2we have --(2m+N-2) (re+N--3)!/(N--2)!m! (see, e.g.
[9]). Then a(u) denotes the set of eigenvalues of the ordinary differential
operator A(u) (d / dr) ((N- 1) r)(d dr) c(r) -- (p r) with (d dr).

Ir=l=0, where c(r)=f’(u).
Now, for these sets a(u) (m-- 0, 1, 2, .), we claim the following, where

R+=(O, oo).
Theorem. If f(R+)CR+, then a(u)(-oo, O]= for ml. In par-

ticular, dim Ker A(u) is at most 1 for any solution u on the ball [2={Ix11)
cR, provided that f(R+) cR+.

2. Proof of Theorem. Set am(u)={/]]=O, 1, 2, .} with oo

//?.... Since p,p if m’m, we have//.., and hence we
have only to prove that p0.

The eigent?unction ot A(u) corresponding to /0 is of the orm ,(x)=


