88. The Sylvester's Law of Inertia for Jordan Algebras

By Soji Kaneyuki
Department of Mathematics, Sophia University
(Communicated by Kunihiko Kodaira, m. J. A., Oct. 12, 1988)

The purpose of this note is to present some results on the orbit structure of a compact (=formally real) simple Jordan algebras under the action of the identity component of its structure group. In view of the classification of compact simple Jordan algebras, Theorem 1 is viewed as a natural generalization of the Sylvester's law of inertia for real symmetric or complex Hermitian matrices. We shall use terminologies and well-known facts in the theory of Jordan algebras without giving explanations (see, for instance, Jacobson [2] and Braun-Koecher [1]).

1. Let \mathfrak{A} be a compact simple Jordan algebra of degree r, and let $G(\mathfrak{H})$ be the structure group of \mathfrak{A}. Let $G^{0}(\mathfrak{H})$ denote the identity component of $G(\mathfrak{U})$. Let $a \in \mathfrak{U}$ and let

$$
\begin{equation*}
m_{a}(\lambda)=\lambda^{r}-\sigma_{1}(a) \lambda^{r-1}+\cdots+(-1)^{r} \sigma_{r}(a) \tag{1}
\end{equation*}
$$

be the generic minimum polynomial of a (for details, see [2]). Note that each $\sigma_{i}(a)$ is a homogeneous polynomial of degree i in the components of a. If we denote the minimum polynomial of the element a by $\mu_{a}(\lambda)$, then each irreducible factor of $m_{a}(\lambda)$ is a factor of $\mu_{a}(\lambda)$ ([2]). The polynomial equation $\mu_{a}(\lambda)=0$ has only real roots, since \mathfrak{A} is compact ([1]). Therefore the equation $m_{a}(\lambda)=0$ also has only real roots. By the signature of an element $a \in \mathfrak{Z}$ (denoted by sgn (α)), we mean the pair of the integers (p, q) such that p and q are numbers of positive and negative roots of the equation $m_{a}(\lambda)$ $=0$, respectively. Here the number of a root should be counted by including its multiplicity. Let $\mathfrak{U}_{p, q}$ denote the set of elements $a \in \mathfrak{A}$ with $\operatorname{sgn}(a)$ $=(p, q)$. Then we have

$$
\begin{equation*}
\mathfrak{Y}=\prod_{p+q \leqslant r} \mathfrak{A}_{p, q} . \tag{2}
\end{equation*}
$$

Now let e be the unit element of \mathfrak{A}. Since \mathfrak{A} is of degree r, one can choose a system of primitive orthogonal idempotents $\left\{e_{1}, \cdots, e_{r}\right\}$ of \mathfrak{N} such that $\sum_{i=1}^{r} e_{i}=e$. Such systems are conjugate to each other under the automorphism group Aut \mathfrak{A} of \mathfrak{A}. We choose and fix such a system $\left\{e_{1}, \cdots, e_{r}\right\}$ and put

$$
\begin{equation*}
o_{p, q}=\sum_{i=1}^{p} e_{i}-\sum_{j=p+1}^{p+q} e_{j}, \quad p, q \geqslant 0, \quad p+q \leqslant r ; \tag{3}
\end{equation*}
$$

here we are adopting the convention that the first and the second terms of the right hand side of (3) should be zero, provided that $p=0$ and $q=0$, respectively.

Theorem 1. Let \mathfrak{A} be a compact simple Jordan algebra of degree r. Then the decomposition (2) is the $G^{0}(\mathfrak{H})$-orbit decomposition of \mathfrak{A}. More

