87. The Period Map of a 4-parameter Family of K3 Surfaces and the Aomoto-Gel'fand Hypergeometric Function of Type $(3,6){ }^{\text {t) }}$

By Keiji Matsumoto,*) Takeshi Sasaki,**) and Masaaki Yoshida*)
(Communicated by Kunihiko Kodaira, m. J. A., Oct. 12, 1988)

We show that one of Aomoto-Gel'fand hypergeometric functions ([4]) can be interpreted as the period map of a 4-dimensional family of $K 3$ surfaces, of which the target is the 4 -dimensional Hermitian symmetric bounded domain of type IV. The corresponding system of differential equations has six linearly independent solutions which are quadratically related. (Such systems are recently studied in [10].) This fact confers an algebro-geometric decoration to the Aomoto-Gel'fand functions as the relation between the elliptic modular function and the corresponding equation does to the Gauss hypergeometric function. Details will be given in [6].

We describe a family of $K 3$ surfaces. Let

$$
l_{j}=\left\{\left(t^{1}, t^{2}, t^{3}\right) \in \boldsymbol{C} P^{2} \mid v_{1 j} t^{1}+v_{2 j} t^{2}+v_{3 j} t^{3}=0\right\} \quad(0 \leqq j \leqq 6)
$$

be six lines in general position in the complex projective plane $C P^{2}$ with homogeneous coordinates $\left(t^{1}, t^{2}, t^{3}\right)$ and let $S(l)$ be the minimal smooth model of the two-fold cover $S^{\prime}(l)$ of $C P^{2}$ branching along the line configuration $l=\left\{l_{1}, \cdots, l_{6}\right\}$. For a fixed l, the surface $S(l)$ is a $K 3$ surface, i.e., there is a unique holomorphic 2-form

$$
\begin{equation*}
\eta(l)=\prod_{j=1}^{6}\left(v_{1 j} s^{1}+v_{2 j} s^{2}+v_{3 j}\right)^{-1 / 2} d s^{1} \wedge d s^{2} \tag{1}
\end{equation*}
$$

up to constant multiplication, and the rank of the second homology group $H_{2}(S(l), Z)$ is 22 . In this case, there are 16 linearly independent cycles; 15 exceptional curves coming from the 15 double points of $S^{\prime}(l)$ and a section when considered $S(l)$ as an elliptic surface over $C P^{1}$. We can take a system $\gamma_{1}^{\prime}(l), \cdots, \gamma_{6}^{\prime}(l) \in H_{2}(S(l) Z)$ of six (transcendental) cycles orthogonal to the algebraic cycles such that there exists another system $\gamma_{1}(l), \cdots, \gamma_{6}(l) \in$ $H_{2}(S(l), \boldsymbol{Z})$ which is dual to $\gamma_{j}^{\prime}(1 \leqq j \leqq 6)$, i.e., $\gamma_{i}^{\prime} \cdot \gamma_{j}=\delta_{i j}$ (Kronocker's symbol) and that its intersection matrix $\left(\gamma_{i}^{\prime} \cdot \gamma_{j}^{\prime}\right)(1 \leqq i, j \leqq 6)$ takes the fixed form $I=\left(I_{i j}\right)$, which is symmetric, integral and with the signature ($2+, 4-$). The vector $\omega(l)=\left(\omega_{1}(l), \cdots, \omega_{6}(l)\right)$, where $\omega_{j}(l)=\int_{r_{j}(l)} \eta(l)(1 \leqq j \leqq 6)$, is called the period of $S(l)$ and it satisfies the Riemann relation and the Riemann inequality as follows

$$
\begin{align*}
& \sum_{i, j} I_{i j} \omega_{i}(l) \omega_{j}(l)=0 \tag{2}\\
& \sum_{i, j} I_{i j} \omega_{i}(l) \bar{\omega}_{j}(l)>0 .
\end{align*}
$$

${ }^{\text {t) }}$ Dedicated to Professor Hisasi Morikawa on his 60th birthday.
*) Department of Mathematics, Kyushu University.
**) Department of Mathematics, Kumamoto University and Brown University.

