87. The Period Map of a 4-parameter Family of K3 Surfaces and the Aomoto-Gel'fand Hypergeometric Function of Type (3, 6)^{†)}

By Keiji MATSUMOTO,*) Takeshi SASAKI,**) and Masaaki YOSHIDA*)

(Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1988)

We show that one of Aomoto-Gel'fand hypergeometric functions ([4]) can be interpreted as the period map of a 4-dimensional family of K3 surfaces, of which the target is the 4-dimensional Hermitian symmetric bounded domain of type IV. The corresponding system of differential equations has six linearly independent solutions which are quadratically related. (Such systems are recently studied in [10].) This fact confers an algebro-geometric decoration to the Aomoto-Gel'fand functions as the relation between the elliptic modular function and the corresponding equation does to the Gauss hypergeometric function. Details will be given in [6].

We describe a family of K3 surfaces. Let

 $l_j = \{(t^1, t^2, t^3) \in CP^2 | v_{1j}t^1 + v_{2j}t^2 + v_{3j}t^3 = 0\}$ $(0 \le j \le 6)$ be six lines in general position in the complex projective plane CP^2 with homogeneous coordinates (t^1, t^2, t^3) and let S(l) be the minimal smooth model of the two-fold cover S'(l) of CP^2 branching along the line configuration $l = \{l_1, \dots, l_s\}$. For a fixed l, the surface S(l) is a K3 surface, i.e., there is a unique holomorphic 2-form

(1)
$$\eta(l) = \prod_{j=1}^{9} (v_{1j}s^1 + v_{2j}s^2 + v_{3j})^{-1/2} ds^1 \wedge ds^2,$$

up to constant multiplication, and the rank of the second homology group $H_2(S(l), Z)$ is 22. In this case, there are 16 linearly independent cycles; 15 exceptional curves coming from the 15 double points of S'(l) and a section when considered S(l) as an elliptic surface over $\mathbb{C}P^1$. We can take a system $\gamma'_1(l), \dots, \gamma'_6(l) \in H_2(S(l)Z)$ of six (transcendental) cycles orthogonal to the algebraic cycles such that there exists another system $\gamma_1(l), \dots, \gamma_6(l) \in H_2(S(l), Z)$ which is dual to γ'_j $(1 \leq j \leq 6)$, i.e., $\gamma'_i \cdot \gamma_j = \delta_{ij}$ (Kronocker's symbol) and that its intersection matrix $(\gamma'_i \cdot \gamma'_j)$ $(1 \leq i, j \leq 6)$ takes the fixed form $I = (I_{ij})$, which is symmetric, integral and with the signature (2+, 4-). The vector $\omega(l) = (\omega_1(l), \dots, \omega_6(l))$, where $\omega_j(l) = \int_{\tau_j(l)} \eta(l)$ $(1 \leq j \leq 6)$, is called the period of S(l) and it satisfies the Riemann relation and the Riemann inequality as follows

$$(2) \qquad \qquad \sum_{i,j} I_{ij} \omega_i(l) \omega_j(l) = 0$$

$$(3) \qquad \qquad \sum_{i,j} I_{ij} \omega_i(l) \overline{\omega}_j(l) > 0.$$

^{†)} Dedicated to Professor Hisasi MORIKAWA on his 60th birthday.

^{*)} Department of Mathematics, Kyushu University.

^{**)} Department of Mathematics, Kumamoto University and Brown University.