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Let K be a finite extension of the rational number field @ and L a finite
abelian extension of K. For a subextension M of L/K, we denote by E
(resp. W) the group of units of M (resp. the group of roots of unity in M)
and define K, c={c € E; | Ny, re € Wy for all subextensions F'=M of M/K},
where N, is the norm map from M to F. The elements of E,, are called
relative units of M over K. Weput Ey=FE W, /W,~E ]/ Wy. In this
note we shall prove

Theorem. Let I denote the set of cyclic subextensions of L|K.

(1) (ELWIOERCT] yeau Ex and the product [] is direct.

(ii) Letr,, 7, be the numbers of real and complex places of K, respec-
tively, and Z the ring of rational integers. For M e M, let r* denote the
number of real places of K which are unramified in M and let O, denote
the ring of integers of the [M: K]-th cyclotomic field. Then &y is an Oy-
module. Moreover,

Znn if M=K,
SM:{O if M=K and r¥ +7r,=0,
O nI@Uy  if M#K and 1 +1,>0,

where W, is a non-zero ideal of O,.

This theorem has been proved in [3] and [2] if K=, in [5] and [4] if
K is an imaginary quadratic field.
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§1. Preliminaries. Let G be an abelian group of finite order n. Let
QIG] (resp. Z[G]) denote the group ring of G over @ (resp. Z). Let 4 denote
the set of @-irreducible characters of G. For 2e 4, we denote G,={s € G|
Ao)=21)}, n,=[G: Gl and 4,={pec 4|G,=SG,}. We define

el=l ST Do e lz[G]C_;_Q[G] and s,= >, ocecZI[G].
N o¢ed n gEG)

It is easy to see that e}=e,, €e,e,=0 (A%, > c.e,=1 and
(1) =2 e,

Let A be a G-module. Let A=A/TA, where TA is the Z-torsion part of
A, and let [: A—A denote the canonical surjective G-homomorphism. We
note that 4 can be embedded into the Q[Gl-module 4,=A®,Q and that
Ag=®c16,44. For 2e 4, we denote A*={a c A|ga=qa for all ¢ € G;}; then
for a ¢ A* we have



