Zeta Zeros and Dirichlet L-functions. 84. Π

By Akio FUJII

Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1988)

We shall extend the investigations in [2] further. Let γ run over the positive imaginary parts of the zeros of the Riemann zeta function $\zeta(s)$. We are concerned with the distribution of $b(\gamma/2\pi) \log(\gamma/2\pi e\alpha) \mod$ one. When b > 1, the problem seems to be very difficult and our knowledge seems to be very scarce except our Theorem 5 below and a simple consequence of theorem in [1] with the help of Pjateckii-Sapiro's theorem in [4]. In this article we shall show that even the case for $0 < b \leq 1$ involves also the difficulty which lies as deep as the Generalized Riemann Hypothesis (G.R.H.) for Dirichlet L-functions $L(s, \chi)$. We assume the Riemann Hypothesis below.

We start with recalling the following fundamental theorem which is a special case of our main theorem in [1].

Theorem 1. Let K be an integer ≥ 1 and let $T > T_0$. Then for any positive α ,

$$\sum_{\gamma < T} e\left(\frac{\gamma}{2\pi K} \log\left(\frac{\gamma}{2\pi e\alpha K}\right)\right) = -e^{(1/4)\pi i} \sqrt{\alpha} K \sum_{n < (T/2\pi\alpha K)^{1/K}} \Lambda(n)e(-\alpha n^{K})n^{(1/2)(K-1)} + 0(T^{(2/5) + (1/2K)}(\log T \cdot \log \log T)^{4/5}) + 0(\sqrt{T} \log^{2} T),$$

where we put $e(x) = e^{2\pi i x}$, $\Lambda(x) = \log p$ if $x = p^k$ with a prime number p and an integer $k \ge 1$ and $\Lambda(x) = 0$ otherwise.

When α is rational, we get the following corollary using the prime theorem in the arithmetic progressions.

Corollary 1. Let K be an integer ≥ 1 and let $T > T_0$. Then for any integers a and $q \ge 1$ with (a, q) = 1, we have

$$\sum_{\tau < T} e\left(\frac{\gamma}{2\pi K} \log\left(\frac{\gamma}{2\pi e(a/q)K}\right)\right) = -e^{(1/4)\pi i} C\left(\frac{a}{q}, K\right) (T/2\pi)^{(1/2)(1+(1/K))} + 0(T^{(1/2)(1+(1/K))} \exp\left(-C\sqrt{\log T}\right)),$$

where we put $C(a/q, K) = 2K^{(1/2)(1-(1/K))}\overline{S(a/q, K)}(K+1)^{-1}\varphi(q)^{-1}(a/q)^{-1/2K}$ and $S(a/q, K) = \sum_{b=1}^{\prime} e((a/q)b^{\kappa})$, the dash indicates that b satisfies (b, q) = 1, Cdenotes some positive constant and $\varphi(q)$ is the Euler function.

When α is irrational, using the estimate due to Vinogradov of $\sum_{n < Y} \Lambda(n) e(\alpha n^{K})$ (cf. [6] and also Lemma 2 in [3]), we get the following corollary to Theorem 1 and Corollary 1, which has been mentioned only for the case for K=1 (cf. Corollary 5 in [1]).

Corollary 2. Let K be an integer
$$\geq 1$$
. Then we have

$$\lim_{T \to \infty} (T/2\pi)^{-(1/2)(1+(1/K))} \sum_{r < T} e\left(\frac{\gamma}{2\pi K} \log\left(\frac{\gamma}{2\pi e\alpha K_{r}^{q}}\right)\right)$$

$$= \begin{cases} -e^{(1/4)\pi i}C(a/q, K) & \text{if } \alpha = a/q \text{ with integers a and } q \geq 1 \text{ and } (a, q) = 1 \\ 0 & \text{if } \alpha \text{ is irrational.} \end{cases}$$

m 1