84. Zeta Zeros and Dirichlet L-functions. II

By Akio FuJII
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 12, 1988)

We shall extend the investigations in [2] further. Let γ run over the positive imaginary parts of the zeros of the Riemann zeta function $\zeta(\mathrm{s})$. We are concerned with the distribution of $b(\gamma / 2 \pi) \log (\gamma / 2 \pi e \alpha) \bmod$ one. When $b>1$, the problem seems to be very difficult and our knowledge seems to be very scarce except our Theorem 5 below and a simple consequence of theorem in [1] with the help of Pjateckii-Sapiro's theorem in [4]. In this article we shall show that even the case for $0<b \leqq 1$ involves also the difficulty which lies as deep as the Generalized Riemann Hypothesis (G.R.H.) for Dirichlet L-functions $L(s, \chi)$. We assume the Riemann Hypothesis below.

We start with recalling the following fundamental theorem which is a special case of our main theorem in [1].

Theorem 1. Let K be an integer $\geqq 1$ and let $T>T_{0}$. Then for any positive α,

$$
\begin{aligned}
\sum_{r<T} e\left(\frac{\gamma}{2 \pi K} \log \left(\frac{\gamma}{2 \pi e \alpha K}\right)\right)= & -e^{(1 / 4) \pi i} \sqrt{\alpha} K \sum_{n<\langle(/ 2 \pi \alpha K) 1 / K} \Lambda(n) e\left(-\alpha n^{K}\right) n^{(1 / 2)(K-1)} \\
& +0\left(T^{(2 / 5)+(1 / 2 K)}(\log T \cdot \log \log T)^{4 / 5}\right)+0\left(\sqrt{T} \log ^{2} T\right)
\end{aligned}
$$

where we put $e(x)=e^{2 \pi i x}, \Lambda(x)=\log p$ if $x=p^{k}$ with a prime number p and an integer $k \geqq 1$ and $\Lambda(x)=0$ otherwise.

When α is rational, we get the following corollary using the prime theorem in the arithmetic progressions.

Corollary 1. Let K be an integer $\geqq 1$ and let $T>T_{0}$. Then for any integers a and $q \geqq 1$ with $(a, q)=1$, we have

$$
\begin{aligned}
\sum_{r<T} e\left(\frac{\gamma}{2 \pi K} \log \left(\frac{\gamma}{2 \pi e(a / q) K}\right)\right)= & -e^{(1 / 4) \pi i} C\left(\frac{a}{q}, K\right)(T / 2 \pi)^{(1 / 2)(1+(1 / K))} \\
& +0\left(T^{(1 / 2)(1+(1 / K))} \exp (-C \sqrt{\log T})\right)
\end{aligned}
$$

where we put $C(a / q, K)=2 K^{(1 / 2)(1-(1 / K))} \overline{S(a / q, K)}(K+1)^{-1} \varphi(q)^{-1}(a / q)^{-1 / 2 K}$ and $S(a / q, K)=\sum_{b=1}^{q} e\left((a / q) b^{K}\right)$, the dash indicates that b satisfies $(b, q)=1, C$ denotes some positive constant and $\varphi(q)$ is the Euler function.

When α is irrational, using the estimate due to Vinogradov of $\sum_{n<Y} \Lambda(n) e\left(\alpha n^{K}\right)$ (cf. [6] and also Lemma 2 in [3]), we get the following corollary to Theorem 1 and Corollary 1, which has been mentioned only for the case for $K=1$ (cf. Corollary 5 in [1]).

Corollary 2. Let K be an integer $\geqq 1$. Then we have

$$
\begin{aligned}
& \lim _{T \rightarrow \infty}(T / 2 \pi)^{-(1 / 2)(1+(1 / K))} \sum_{r<T} e\left(\frac{\gamma}{2 \pi K} \log \left(\frac{\gamma}{2 \pi e \alpha K_{!}^{\ell}}\right)\right) \\
& \quad= \begin{cases}-e^{(1 / 4) \pi t} C(a / q, K) & \text { if } \alpha=a / q \text { with integers } a \text { and } q \geqq 1 \text { and }(a, q)=1 \\
0 & \text { if } \alpha \text { is irrational. }\end{cases}
\end{aligned}
$$

