82. On Generalization of G_{δ} Diagonal and Metrization

By G. R. HIREMATH

Department of Mathematics, Talladega College

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1988)

Introduction. J. Chaber's result, [6], that countably compact spaces with G_{δ} diagonal are compact, has inspired us to define the conditions (α_i) , i=1,2 as follows. (See J.G. Ceder's characterization of G_{δ} diagonal, [5].)

 (α_1) (resp. (α_2)): There is a sequence $\{\mathcal{U}_n\}_n$ of semi-open covers with $\bigcap_n St(x, \mathcal{U}_n) = \{x\}$, (resp. $\bigcap_n \overline{St(x, \mathcal{U}_n)} = \{x\}$) for each x in the topological space under consideration, where $St(x, \mathcal{U}_n) = \bigcup \{U \in \mathcal{U}_n | x \in U\}$. We call such a sequence $\{\mathcal{U}_n\}_n$ an (α_1) (resp. (α_2)) sequence.

According to [1], a cover \mathcal{U} of a space x is called *semi-open*, if $x \in \text{Int } St(x, \mathcal{U})$ for $x \in X$. Clearly (α_2) and G_{δ} diagonal property [5] imply (α_1) .

1. Implication of the conditions (a_i) , i=1, 2. Refer [2], [11] and [12] respectively for the notions of point countable type, q and wM.

Lemma 1.1. A regular q space X with (α_1) is first countable.

Proof. Let $x \in X$, $\{G_n\}_n$ be a q sequence at x and $\{U_n\}_n$ be an (α_1) sequence in X. By induction, we can obtain a sequence $\{H_n\}_n$ of open sets with $x \in H_{n+1} \subset \overline{H}_{n+1} \subset H_n \cap G_{n+1} \cap \operatorname{Int} St(x, \mathcal{U}_{n+1})$ for each n. Now, $\{H_n \ge 1\}$ forms a local base at x. Q.E.D.

Theorem 1.2. A regular q space with (α_1) is an open continuous image of a metrizable space.

Proof. Apply the Lemma 1.1 and a result of Ponomarev and Hanai [13], [8]. Q.E.D.

Theorem 1.3. If a regular q space with (α_1) is a quotient image of a locally compact, separable and metrizable space, then the space is locally compact, separable and metrizable.

Proof. Apply the Lemma 1.1 and a result of A. H. Stone, [15].

Q.E.D.

Note 1.4. Since a T_1 space of point countable type is a q space [9], we can replace "q space" by "space of point countable type" in the above theorem.

Theorem 1.5. A wM space X is metrizable, iff it has (α_2) .

Proof. The condition is clearly necessary. To prove that the condition is sufficient, let X have (α_2) and $\{\mathcal{U}_n\}_n$ be an (α_2) sequence. Let $\{\mathcal{G}_n\}_n$ be a wM sequence in X. Let $\mathcal{H}_n = \mathcal{U}_n \wedge \mathcal{G}_n$ for each $n \ge 1$, where $\mathcal{U}_n \wedge \mathcal{G}_n = \{U \cap G | U \in \mathcal{U}_n$ and $G \in \mathcal{G}_n\}$. Then $\{\mathcal{H}_n\}_n$ is also an (α_2) sequence. We may assume that $\mathcal{H}_{n+1} \prec \mathcal{H}_n$ (i.e. \mathcal{H}_{n+1} refines \mathcal{H}_n) for each n. To claim that $\{\mathcal{H}_n\}_n$ is a semi-development of X, we show that $\{St(x, \mathcal{H}_n) | n \ge 1\}$ is a network at x