81. On Complexes in a Finite Abelian Group. II

By Tamás SZŐNYI^{*)} and Ferenc WETTL^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1988)

This is continued from [0].

Proof of Theorem 2. Let $a \in K$ and put K'=K-a. Then $K+K=K \circ K$ means $K'+K'=K' \circ K'$, |K'|=k, $|K' \circ K'|=m$. We have $0 \in K'$, and "K+K is a coset of a subgroup of G" means "K'+K' is a subgroup of G". So rewriting K for K', Theorem 2 can be reformulated as follows.

Theorem 2'. Let $0 \in K$ and suppose $K+K=K \circ K$. If 2m < 3k, then K+K is a subgroup of G.

The proof of this theorem depends on the following

Theorem of Kneser ([1], see Mann [2, p. 6]). For any complexes A, B of G, there exists a subgroup H of G such that A+B=A+B+H and $|A+B| \ge |A+H|+|B+H|-|H|$.

For A=B=K, we obtain a subgroup H such that K+K=K+K+Hand $|K+K|\geq 2|K+H|-|H|$. If 2m<3k, we have $m=|K+K|<(3/2)k\leq$ (3/2)|K+H|, and so 2|H|>|K+H|. As K+K=K+K+H, we have K+K $\supset H$. If $(K+K)\setminus H\neq \emptyset$, there should be $x, y \in K$ such that $x+y \notin H$. Then x or $y \notin H$. Suppose $x \notin H$. Then $K+H\supset (x+H)\cup H$ and $|K+H|\geq 2|H|$. Thus K+K=H.

Remark. If G=Z/pZ, p being a prime, then K+K=G or $|K+K| \ge 2|K|-1$. This follows from the theorem of Kneser or from Cauchy-Davenport's theorem (see Mann [2, p. 3]).

Let G be any other abelian group than Z|pZ and H a non-trivial subgroup of G (i.e. $H \neq \{0\}, H \neq G$). Put $K = H \cup (x+H), 2x \notin H$. Then |K+K| = (3/2)|K|, so that 3/2 in (ii) can not be replaced by a smaller number.

Since $K \circ K \neq K + K$, in order to prove Theorem 3 we may suppose K satisfies (0). Moreover we may prove Theorem 3 for K with the following maximality property: there is no $s \in G \setminus K$ such that

(*) $|(K \cup \{s\}) \circ (K \cup \{s\})| \le |K \circ K| + 1.$ In fact, if there exists $s \in G \setminus K$ which satisfies (*), then $K' = K \cup \{s\}$ satisfies (0) and if Theorem 3 is proved with respect to K', then the inequality also holds true for K.

Lemma 4. If |G| is odd, K satisfies (0) and there is no $s \in G \setminus K$ which satisfies (*), then $|K^w| \leq m-k+3$ for every $w \in (K \circ K) \setminus K$.

Proof. Suppose $|K^w| \ge m - k + 4$ for some $w \in (K \circ K) \setminus K$. Put $K_{(x)} = \{y \in K \setminus \{x, 0\} | x + y \in K\}$ for $x \ (\neq 0) \in K$, then $K_{(x)} \rightarrow K \cap K_x$, $y \rightarrow x + y$ is a

^{*)} Computer and Automation Institute, Hungarian Academy of Sciences.

^{**)} Mathematical Department of Technical University, Budapest, Faculty of Transportation Engineering.