79. On the Isomonodromic Deformation of Certain Pfaffian Systems Associated to Appell's Systems (F_{2}), (F_{3})

By Keiichi Nakamura
Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1988)
§ 1. Introduction. The purpose of this paper is to derive systems of isomonodromic deformation equations associated to Appell's systems (F_{2}), $\left(F_{3}\right)$, which we shall present in forms that are transformed to Pfaffian systems.

In 1880, P. Appell, generalizing Gauss' hypergeometric equation to the case of two variables, introduced four systems [1]:

$$
\begin{aligned}
& \left(F_{1}\right)\left\{\begin{array}{l}
\theta\left(\theta+\theta^{\prime}+\gamma-1\right) z-x\left(\theta+\theta^{\prime}+\alpha\right)(\theta+\beta) z=0 \\
\theta^{\prime}\left(\theta+\theta^{\prime}+\gamma-1\right) z-y\left(\theta+\theta^{\prime}+\alpha\right)\left(\theta^{\prime}+\beta^{\prime}\right) z=0,
\end{array}\right. \\
& \left(F_{2}\right)\left\{\begin{array}{l}
\theta(\theta+\gamma-1) z-x\left(\theta+\theta^{\prime}+\alpha\right)(\theta+\beta) z=0 \\
\theta^{\prime}\left(\theta^{\prime}+\gamma^{\prime}-1\right) z-y\left(\theta+\theta^{\prime}+\alpha\right)\left(\theta^{\prime}+\beta^{\prime}\right) z=0,
\end{array}\right. \\
& \left(F_{3}\right)\left\{\begin{array}{l}
\theta\left(\theta+\theta^{\prime}+\gamma-1\right) z-x(\theta+\alpha)(\theta+\beta) z=0 \\
\theta^{\prime}\left(\theta+\theta^{\prime}+\gamma-1\right) z-y\left(\theta^{\prime}+\alpha^{\prime}\right)\left(\theta^{\prime}+\beta^{\prime}\right) z=0,
\end{array}\right. \\
& \left(F_{4}\right)\left\{\begin{array}{l}
\theta(\theta+\gamma-1) z-x\left(\theta+\theta^{\prime}+\alpha\right)\left(\theta+\theta^{\prime}+\beta\right) z=0 \\
\theta^{\prime}\left(\theta^{\prime}+\gamma^{\prime}-1\right) z-y\left(\theta+\theta^{\prime}+\alpha\right)\left(\theta+\theta^{\prime}+\beta\right) z=0,
\end{array}\right.
\end{aligned}
$$

where $z=z(x, y)$ is unknown function and $\theta=x \partial / \partial x, \theta^{\prime}=y \partial / \partial y$. It is known that Appell's system $\left(F_{1}\right)$ is transformed into a Pfaffian system on $P_{2}(C)$:
(1.1) $d f=\left(\sum_{i=1}^{b} A_{i}\left(d F_{i}(x, y) / F_{i}(y, x)\right)\right) f$, where $f={ }^{t}(z, x \partial z / \partial x, y \partial z / \partial y)$, $A_{i} \in g l(3, C)$ and F_{i} 's are the defining equations of singular locus of $\left(F_{1}\right)$. (For example see [2].) B. Klares studied the isomonodromic deformation equation of the completely integrable Pfaffian system associated to this system (1.1) in [3]. It is also known that, as well as (F_{1}), Appell's systems $\left(F_{2}\right),\left(F_{3}\right)$ are transformed into Pfaffian systems of type:
(1.2) $\quad d f=\left(\sum_{i=1}^{6} A_{i}\left(d F_{i}(x, y) / F_{i}(x, y)\right)\right) f$, where $f={ }^{t}(z, x \partial z / \partial x, y \partial z / \partial y$, $\left.x y \partial^{2} z / \partial x \partial y\right), A_{i} \in g l(4, C)$ and F_{i} 's are the defining equations of singular locus of the systems ($i=1,2, \cdots, 6$).

The author will present the systems of isomonodromic deformation equations associated to Pfaffian systems (1.2) by the same method as in [3]. Main results of this note are obtained in [4].

The author would like to express his gratitude to Prof. T. Kori for many valuable comments and kindly encouragement.
§ 2. Pfaffian systems satisfying Appell's systems $\left(\boldsymbol{F}_{2}\right),\left(\boldsymbol{F}_{3}\right)$. Let p : $\left(C^{3}\right)^{*} \rightarrow \boldsymbol{P}_{2}(\boldsymbol{C})$ be a canonical projection and (X, Y, Z) be a homogeneous coordinates on $P_{2}(C)$ with $x=X / Z, y=Y / Z$.

Proposition 1. Appell's system $\left(F_{2}\right)$ is transformed into the following completely integrable Pfaffian system on $\boldsymbol{P}_{2}(\boldsymbol{C})$:

