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In part I, we have obtained a measure preserving group action which
is isomorphic to SL(2, R) in the path space of Brownian motion {B(¢; w)};

Be(t; 0)=(ct+d)B ( at+b . a))—ctB (i"_ : w)—dB (_b_ ; w),
ct+d c d

g=(“’ b) ¢ SL2, R).
¢, d

From this action we have deduced a symmetric property called P. Lévy’s
projective invariance of Brownian motion.

In this part we, using the terms of theory of unitary representation,
determine the class of the above action a discrete series representation of
index 2.

§4. Stochastic integral of Wiener type. Let {X(f;w);te R} be a
Gaussian process with continuous path and ¢ € 9(R) be a test function.
Define an integral of Wiener type;

(1)

(6) Ip; 0)= —jR JOX(t; 0)dt.
An inner product is defined by
(7) (@, W=E(p; o) ; 0)] =” o' W EX ()X (s)dtds.

Let us denote L% the completion of D(R) by above inner product. Then
I(-) becomes an isometry form L% into L*(Q).

Example 1. In case of Brownian motion, L% is L*R,dx) and the
isometry I(-) is nothing but the Wiener integral.

Example 2. Let us consider a self-similar process X« of index « (see
§3). The inner product is

(o) «p)=—;—jj /(DS ([t -+ 8] —|t—sl}dtds

=%a(a_1) ” S(OVE) |t —sj-* dids.

We obtain the above formula in the sense of generalized functions, the
function |t —s|*~? is accordingly considered a pseudo function (Gel’fand etc.
[6]). The above inner product space is used as the space of supplementary
series representation of SL(2,R). Therefore this example suggests us a
certain connection between self-similar process and supplementary series
representation of SL(2, R).



