76. Counting Points in a Small Box on Varieties

By Masahiko Fujiwara

Department of Mathematics, Ochanomizu University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1988)

§ 1. Let $G_i(X_1, \dots, X_n)$ $i=1, 2, \dots, s$ be forms with rational integer coefficients of degree ≥ 2 and $n \geq 4$. Let p be a prime and Q a box in \mathbb{R}^n , Q={ $x \in \mathbb{R}^n$; $|x_i - a_i| < B_i$ $i=1, \dots, n$ }. Consider a system of congruences $G_i(X_1, \dots, X_n) \equiv 0 \pmod{p}$ $i=1, \dots, s$.

We are interested in the number of solutions $\mathbf{x} = (x_1, \dots, x_n)$ of these congruences, lying in a given relatively small box Q in \mathbb{R}^n . We write $N(G_1, \dots, G_s, Q)$ or N(G, Q) briefly for that number. Namely,

 $N(\boldsymbol{G}, Q) = \#\{\boldsymbol{x} \in \boldsymbol{Z}^n \cap Q ; \boldsymbol{G}(\boldsymbol{x}) \equiv 0 \pmod{p}\}.$

In case $Q = [0, p)^n$, there is a classical theorem of Lang and Weil [10] and a far-reaching result of Deligne [6] for nonsingular G. When solutions in a small box Q are considered, a delicate handling is required since there are no nontrivial solutions at all if Q is too small; $X_1^a + \cdots + X_n^d \equiv 0 \pmod{p}$, d even, has nontrivial solutions only if $\max |x_i| \gg p^{1/d}$. G. Meyerson [12] and R. C. Baker [1] gave sufficient conditions for N > 1. On the other hand W. M. Schmidt [5], though not explicitly mentioned, virtually showed that, under certain nonsingularity condition, $N \sim |Q|/p^s$ for a cube Q of size $\gg p^{1/d + \rho_n(d)}$, where |Q| is the volume of Q and $\rho_n = c_1(d)s/n$. He proved this by using his deep result on "incomplete" exponential sums. His result is in a sense best possible. However, n must be very large in order that the theorem is meaningful, since $c_1(d)$ is very large at present. W. M. Schmidt [15] also gave a condition of similar type for $N \sim |Q|/p^s$, without nonsingular condition. For these, an excellent reference is [2].

In the present paper, we first show that, under some conditions, $N \sim |Q|/p^s$ for any large box Q and $n \ge 4$ (Theorem 1). Throughout our paper, nonsingular mod p means nonsingular over the algebraic closure of the finite field with p elements. Let us introduce the following property $P_g(p)$. $P_g(p)$: the highest degree part of $a_1G_1 + \cdots + a_sG_s$ is nonsingular mod p

for all non-zero s-tuples (a_1, \dots, a_s) of integers (mod p).

Theorem 1. (a) Let p be a prime, $p \ge B_1, \dots, B_n \ge c(n, d, \varepsilon)$ and $|Q| \ge c(n, d, \varepsilon)p^{(n/2)+s}$. Assume that G defines a variety of codim s mod p and that $P_g(p)$ holds. Then

 $(1) \qquad (1-\varepsilon)(|Q|/p^s) \leq N(G,Q) \leq (1+\varepsilon)(|Q|/p^s).$

(b) Let p be a prime, $p \ge c(n, d, \epsilon)$ and Q a cube with $|Q| \ge p^{(n/2)+s-((n-2s)/(2n-2))}$. Assume that G defines a nonsingular variety of codim s mod p and that $P_{g}(p)$ holds. Then (1) holds.

The proof uses a counting function F(X) introduced later and some