76. Counting Points in a Small Box on Varieties

By Masahiko Fujiwara
Department of Mathematics, Ochanomizu University

(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1988)
§1. Let $G_{i}\left(X_{1}, \cdots, X_{n}\right) i=1,2, \cdots, s$ be forms with rational integer coefficients of degree ≥ 2 and $n \geq 4$. Let p be a prime and Q a box in R^{n}, Q $=\left\{\boldsymbol{x} \in \boldsymbol{R}^{n} ;\left|x_{i}-a_{i}\right|<B_{i} i=1, \cdots, n\right\}$. Consider a system of congruences

$$
G_{i}\left(X_{1}, \cdots, X_{n}\right) \equiv 0(\bmod p) \quad i=1, \cdots, s
$$

We are interested in the number of solutions $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ of these congruences, lying in a given relatively small box Q in \boldsymbol{R}^{n}. We write $N\left(G_{1}, \cdots, G_{s}, Q\right)$ or $N(\boldsymbol{G}, Q)$ briefly for that number. Namely, $N(\boldsymbol{G}, Q)=\#\left\{\boldsymbol{x} \in \boldsymbol{Z}^{n} \cap Q ; \boldsymbol{G}(\boldsymbol{x}) \equiv 0(\bmod p)\right\}$.
In case $Q=[0, p)^{n}$, there is a classical theorem of Lang and Weil [10] and a far-reaching result of Deligne [6] for nonsingular G. When solutions in a small box Q are considered, a delicate handling is required since there are no nontrivial solutions at all if Q is too small; $X_{1}^{d}+\cdots+X_{n}^{d} \equiv 0(\bmod p)$, d even, has nontrivial solutions only if $\max \left|x_{i}\right| \gg p^{1 / d}$. G. Meyerson [12] and R. C. Baker [1] gave sufficient conditions for $N>1$. On the other hand W. M. Schmidt [5], though not explicitly mentioned, virtually showed that, under certain nonsingularity condition, $N \sim|Q| / p^{s}$ for a cube Q of size $\gg p^{1 / d+\rho_{n}(d)}$, where $|Q|$ is the volume of Q and $\rho_{n}=c_{1}(d) s / n$. He proved this by using his deep result on "incomplete" exponential sums. His result is in a sense best possible. However, n must be very large in order that the theorem is meaningful, since $c_{1}(d)$ is very large at present. W. M. Schmidt [15] also gave a condition of similar type for $N \sim|Q| / p^{s}$, without nonsingular condition. For these, an excellent reference is [2].

In the present paper, we first show that, under some conditions, $N \sim$ $|Q| / p^{s}$ for any large box Q and $n \geq 4$ (Theorem 1). Throughout our paper, nonsingular mod p means nonsingular over the algebraic closure of the finite field with p elements. Let us introduce the following property $P_{G}(p)$. $P_{G}(p)$: the highest degree part of $a_{1} G_{1}+\cdots+a_{s} G_{s}$ is nonsingular $\bmod p$ for all non-zero s-tuples $\left(a_{1}, \cdots, a_{s}\right)$ of integers $(\bmod p)$.
Theorem 1. (a) Let p be a prime, $p \geq B_{1}, \cdots, B_{n} \geq c(n, d, \varepsilon)$ and $|Q| \geq$ $c(n, \boldsymbol{d}, \varepsilon) p^{(n / 2)+s}$. Assume that \boldsymbol{G} defines a variety of $\operatorname{codim} s \bmod p$ and that $P_{G}(p)$ holds. Then

$$
\begin{equation*}
(1-\varepsilon)\left(|Q| / p^{s}\right) \leq N(\boldsymbol{G}, Q) \leq(1+\varepsilon)\left(|Q| / p^{s}\right) \tag{1}
\end{equation*}
$$

(b) Let p be a prime, $p \geq c(n, d, \varepsilon)$ and Q a cube with $|Q| \geq$ $p^{(n / 2)+s-((n-2 s) /(2 n-2))}$. Assume that \boldsymbol{G} defines a nonsingu!ar variety of codim $s \bmod p$ and that $P_{G}(p)$ holds. Then (1) holds.

The proof uses a counting function $F(X)$ introduced later and some

