75. Structural Operators for Linear Delay-differential Equations in Hilbert Space

By Hiroki Tanabe
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1988)

Let H and V be complex Hilbert spaces such that V is a dense subspace of H and the inclusion mapping of V into H is continuous. The norms of H and V are denoted by | | and $\|\|$ respectively. Identifying H with its antidual we may write $V \subset H \subset V^{*}$. We use the notation (,) to denote both the innerproduct of H and the pairing between V^{*} and V. For a couple of Hilbert spaces X and Y the notation $B(X, Y)$ denotes the totality of bounded linear mappings of X into Y, and $B(X)=B(X, X)$.

Let $a(u, v)$ be a sesquilinear form defined on $V \times V$. Suppose that there exist positive constants C and c such that

$$
|a(u, v)| \leqq C\|u\|\|v\|, \quad \operatorname{Re} a(u, u) \geqq c\|u\|^{2}
$$

for any $u, v \in V$. Let $-A_{0} \in B\left(V, V^{*}\right)$ be the operator associated with this sesquilinear form : $\left(-A_{0} u, v\right)=\alpha(u, v), u, v \in V$. The realization of A_{0} in H which is the restriction of A_{0} to $D\left(A_{0}\right)=\left\{u \in V: A_{0} u \in H\right\}$ is also denoted by the same letter A_{0}. It is known that A_{0} generates an analytic semigroup in both H and V^{*}.

Let $A_{i}, i=1,2$, be operators in $B\left(V, V^{*}\right)$. Then, $A_{i} A_{0}^{-1} \in B\left(V^{*}\right)$ for $i=1,2$. We assume that these two operators map H to itself and $A_{i} A_{0}^{-1} \in$ $B(H), i=1,2$. We assume also that $A_{i}^{*}\left(A_{0}^{*}\right)^{-1} \in B(H), i=1,2$, where A_{0}^{*}, A_{i}^{*} $\in B\left(V, V^{*}\right)$ are the adjoint operators of A_{0}, A_{i}.

Let $\alpha(s)$ be a real valued Hölder continuous function in the interval [$-h, 0$], where h is some positive number. We consider the following delay-differential equation

$$
\begin{equation*}
d u(t) / d t=A_{0} u(t)+A_{1} u(t-h)+\int_{-h}^{0} \alpha(s) A_{2} u(t+s) d s \tag{1}
\end{equation*}
$$

which is considered as an equation in both H and V^{*}. According to [3] the fundamental solution $W(t)$ of (1) can be constructed.

It is easily seen that the space

$$
\left\{f \in V^{*}: \int_{0}^{\infty}\left\|A_{0} \exp \left(t A_{0}\right) f\right\|_{*}^{2} d t<\infty\right\}
$$

coincides with H, where $\left\|\|_{*}\right.$ is the norm of V^{*}. Hence, in view of [1] the semigroup $S(t)$ in $Z=H \times L^{2}(-h, 0 ; V)$ is defined by

$$
S(t) g=(u(t ; g), u(t+\cdot ; g)), \quad g=\left(g^{0}, g^{1}\right) \in Z
$$

where $u(t ; g)$ is the mild solution of (1) (cf. [2]) satisfying the initial condition

$$
u(0 ; g)=g^{0}, \quad u(s ; g)=g^{1}(s), \quad-h \leqq s<0
$$

