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Introduction. Let be a fixed prime number and u(q) denote the pro-/
completion of the topological undamental group o a compact Riemann
surface of genus g_2. So, we have

()--F/N,
where F is the free pro-/group o rank 2g generated by x, -.., x and N
is the closed normal subgroup of F which is normally generated by
[x:,xq+]...[x,x], [, being the commutator; [x, y]=xyx-y- (x, y eF).
We denote by Fq the outer automorphism group o zq) and call it the pro-/
mapping class group. Let

2: I"q -GSp (2g, Zt)
be the canonical homomorphism induced by the action of
(cf. Asada-Kaneko [2, 2]). We treat the case g-2. Then, our result is
the ollowing

Theorem. Assume that 15. Then, there exists an integer N_I such
that the following statement holds:

If A e GSp (4, Z) satisfies the condition A14 mod Iv, -I(CA) contains
more than one F2-con]ugacy class. Here, CA denotes the GSp(4, Zt)-con-
]ugacy class containing A.

In our previous paper [2, 6], we have proved this "indistinguisha-

bility of conjugacy class" under the assumption that g3. The method
adopted there is the "calculations modulo ()(3)", which does not seem to
work in case g---2. ((()(k)} denotes, as usual, the descending central
series of (q).) So, to prove the above theorem., we use the method "calcu-
lations modulo uq)(4)". Although this requires rather complicated calcu-
lations, it is carried out by using the "Lie algebra" of the nilpotent pro-/

group. ()/()(4).
For those results on the indistinguishability of conjugacy class of the

pro-/braid group and the motivation of these studies, see Ihara [3], [4],
Kaneko [5].

1. Preliminaries for proving theorem. To prove Theorem., we need
some preliminaries. As before, let u (=(:)) denote the pro-/ completion
of the topological fundamental group of a compact Riemann surface of
genus 2 and/a denote the automorphism group of u. For an automorphism
of , we put

s,(p)=xTx:( (1GIG4).


