73. Indistinguishability of Conjugacy Classes of the Pro-l Mapping Class Group

By Mamoru ASADA

Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1988)

Introduction. Let l be a fixed prime number and $\pi^{(g)}$ denote the pro-l completion of the topological fundamental group of a compact Riemann surface of genus $g \ge 2$. So, we have

$$\pi^{(g)}=F/N,$$

where F is the free pro-l group of rank 2g generated by x_1, \dots, x_{2g} and N is the closed normal subgroup of F which is normally generated by $[x_1, x_{g+1}] \cdots [x_g, x_{2g}]$, [,] being the commutator; $[x, y] = xyx^{-1}y^{-1}(x, y \in F)$. We denote by Γ_g the outer automorphism group of $\pi^{(g)}$ and call it the pro-l mapping class group. Let

 $\lambda: \Gamma_{g} \longrightarrow \operatorname{GSp}(2g, Z_{i})$

be the canonical homomorphism induced by the action of Γ_{q} on $\pi^{(q)}/[\pi^{(q)}, \pi^{(q)}]$ (cf. Asada-Kaneko [2, § 2]). We treat the case g=2. Then, our result is the following

Theorem. Assume that $l \ge 5$. Then, there exists an integer $N \ge 1$ such that the following statement holds:

If $A \in \operatorname{GSp}(4, \mathbb{Z}_l)$ satisfies the condition $A \equiv 1_4 \mod l^{\mathbb{N}}, \lambda^{-1}(\mathbb{C}_A)$ contains more than one Γ_2 -conjugacy class. Here, \mathbb{C}_A denotes the $\operatorname{GSp}(4, \mathbb{Z}_l)$ -conjugacy class containing A.

In our previous paper [2, § 6], we have proved this "indistinguishability of conjugacy class" under the assumption that $g \ge 3$. The method adopted there is the "calculations modulo $\pi^{(g)}(3)$ ", which does not seem to work in case g=2. $(\{\pi^{(g)}(k)\}_{k\ge 1}$ denotes, as usual, the descending central series of $\pi^{(g)}$.) So, to prove the above theorem, we use the method "calculations modulo $\pi^{(g)}(4)$ ". Although this requires rather complicated calculations, it is carried out by using the "Lie algebra" of the nilpotent pro-l group $\pi^{(g)}/\pi^{(g)}(4)$.

For those results on the indistinguishability of conjugacy class of the pro-*l* braid group and the motivation of these studies, see Ihara [3], [4], Kaneko [5].

§1. Preliminaries for proving theorem. To prove Theorem, we need some preliminaries. As before, let π ($=\pi^{(2)}$) denote the pro-*l* completion of the topological fundamental group of a compact Riemann surface of genus 2 and $\tilde{\Gamma}$ denote the automorphism group of π . For an automorphism ρ of π , we put

$$s_i(\rho) = x_i^{\rho} x_i^{-1}$$
 (1 $\leq i \leq 4$).