8. Complex Analytic Compactifications of C^3

By Mikio FURUSHIMA

Kumamoto National College of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1988)

Let X be an n-dimensional connected compact complex manifold and Y an analytic subset of X. We call the pair (X, Y) a complex analytic compactification of C^n if X-Y is biholomorphic to C^n . For n=1, it is easy to see that $(X, Y) \cong (P^1, \infty)$. For n=2, Remmert-Van de Ven [6] proved that $(X, Y) \cong (P^2, P^1)$ if Y is irreducible, where $Y = P^1$ is a line in P^2 .

In this note, we will study the case in which n=3. Our main result is the following

Theorem. Let (X, Y) be a complex analytic compactification of C^3 . Assume that Y is normal. Then $(X, Y) \cong (\mathbf{P}^3, \mathbf{P}^2)$, $(\mathbf{Q}^3, \mathbf{Q}_0^2)$ or (V_5, H_5) , where $\mathbf{Q}^3 \longrightarrow \mathbf{P}^4$ is a smooth quadric hypersurface, \mathbf{Q}_0^2 is a quadric cone, V_5 is a Fano 3-fold of degree 5 in \mathbf{P}^6 and H_5 is a hyperplane section of V_5 which has a singularity of A_4 -type.

Remark. These pairs (P^3, P^2) , (Q^3, Q_0^2) , (V_5, H_5) really exist.

Sketch of Proof. Let (X, Y) be as in Theorem. The normality of Y implies the projectivity of X (cf. [1]). Then X is a Fano 3-fold with $b_2(X) = 1$. Let $r(0 < r \le 4)$ be the index of X. In the case of $r \ge 2$, we have proved in [2] the following results:

- (i) $r=4 \Rightarrow (X, Y) \cong (\mathbf{P}^3, \mathbf{P}^2)$
- (ii) $r=3 \Rightarrow (X, Y) \cong (Q^3, Q_0^2)$
- (iii) $r=2 \Rightarrow (X, Y) \cong (V_5, H_5).$

Therefore we have only to show that the case of r=1 can not occur.

Assume that such a (X, Y) exists in the case of r=1. Then, by the classification of Fano 3-folds due to Iskovskih [3] and the detailed analysis of the singularities of the boundary Y, we find that $(X, Y) \cong (V_{22}, H_{22})$, where $X = V_{22}$ is a Fano 3-fold of degree 22 in P^{13} and $Y = H_{22}$ is a hyperplane section of V_{22} which has a minimally elliptic singularity x of type $A_{3,**,o} + D_{5,*,o}$ in the terminology of Laufer [6].

Next, let us consider the triple projection of V_5 from the singularity x of Y. Then we have the diagram below:

where

- (1) $\sigma: V'_{22} \rightarrow V_{22}$ is the blowing up of V_{22} at the point $x \in Y \subset X$.
- (2) W is a smooth 3-fold and $\pi: W \rightarrow Q$ is a conic bundle over a quadric