69. Local Deformation of Pencil of Curves of Genus Two

By Eiji Horikawa
College of Arts and Sciences, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1988)

§ 1. Introduction. Let S be a compact complex surface which admits a surjective holomorphic map $g: S \rightarrow \Delta$ onto a compact Riemann surface Δ. We suppose that the general fibres are smooth curves of genus 2. Then S is birationally equivalent to a branched double covering S^{\prime} over a \boldsymbol{P}^{1} bundle W over Δ whose branch locus B intersects a general \boldsymbol{P}^{1} at 6 points. Though there are infinitely many choices of W, we can choose one, by applying elementary transformations to W, such that the branch locus B is, in some sense, canonical. After this is done, the singular fibres of g are classified into six types (0), (I_{k}), (II_{k}), (III_{k}), (IV_{k}) and (V) (see [4]). Recall that the singular fibres of type (0) are obtained by resolving only rational double points on the singular model S^{\prime}, and that the most general singular fibres of type (I_{1}) are composed of two elliptic curves with selfintersection number -1 which intersect transversally at one point (they will be called general (I_{1}) type).

In this paper we study deformations of surfaces with such fibration, but only locally at each singular fibre. More precisely, let $g^{-1}(P), P \in \Delta$ be a singular fibre of S and let U be a small neighborhood of P and $X=g^{-1}(U)$. Then we shall prove the following theorem.

Theorem. Assume $g^{-1}(P)$ is a singular fibre of type (T) other than type (0). Then there exists a family $\left\{X_{t}\right\}_{t \in M}$ of deformations of $X=X_{0}$, $0 \in M$ such that
i) each X_{t} admits a holomorphic map $g_{t}: X_{t} \rightarrow U$ whose general fibre is of genus 2, and g_{t} depends holomorphically on t,
ii) for general $t \in M, g_{t}: X_{t} \rightarrow U$ has only singular fibres of general $\left(\mathrm{I}_{1}\right)$ type and type (0),
iii) the number $\delta(\mathrm{T})$ of these singular fibres of general $\left(\mathrm{I}_{1}\right)$ type in g_{t} is given by

$$
\delta\left(\mathrm{I}_{k}\right)=\delta\left(\mathrm{III}_{k}\right)=2 k-1, \quad \delta\left(\mathrm{II}_{k}\right)=\delta\left(\mathrm{IV}_{k}\right)=2 k, \quad \delta(\mathrm{~V})=1
$$

This theorem states that each singular fibre of type (T) is, in some sense, "equivalent" to $\delta(T)$ singular fibres of general $\left(\mathrm{I}_{1}\right)$ type modulo those of type (0). Recall that the value $\delta(\mathrm{T})$ equals the contribution of the singular fibre of type (T) to the difference $c_{1}^{2}-\left(2 \chi+6(\pi-1)\right.$), where $\chi=\chi\left(\mathcal{O}_{S}\right)$, π is the genus of Δ and the Chern number c_{1}^{2} is the value for relatively minimal S [4, Theorem 3].

The result is related to the construction of a family of deformations of elliptic double points which admits simultaneous resolution. To conclude

