64. A Generalization of the Hille-Yosida Theorem

By Isao Miyadera

Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1988)

1. Introduction. Let X be a Banach space, and let B(X) be the set of all bounded linear operators from X into itself. Arendt [1] introduced the notion of integrated semigroups and obtained the following generalization of the Hille-Yosida theorem: A closed linear operator A is the generator of a once integrated semigroup $\{U(t); t \ge 0\}$ on X satisfying $||U(t+h) - U(t)|| \le Mhe^{a(t+h)}$ for $t, h \ge 0$ if and only if $(a, \infty) \subset \rho(A)$ and $||(\lambda - A)^{-m}|| \le M/(\lambda - a)^m$ for $\lambda > a$ and $m \ge 1$, where M > 0 and $a \ge 0$ are constants. Moreover, the part of A in $\overline{D(A)}$ is the generator of a (C_0) -semigroup on $\overline{D(A)}$.

Let $C \in B(X)$ be injective. In this paper we introduce the notion of integrated C-semigroups and prove the following theorems.

Theorem 1. An operator A is the generator of an integrated C-semigroup $\{U(t); t \ge 0\}$ on X satisfying

(1.1) $\|U(t+h)-U(t)\| \le Mhe^{a(t+h)}$ for $t, h \ge 0$, where M > 0 and $a \ge 0$ are constants, if and only if A satisfies the following properties (A1)-(A3) and it is maximal with respect to (A1)-(A3):

(A1) A is a closed linear operator and $\lambda - A$ is injective for $\lambda > a$;

(A2) $D((\lambda - A)^{-m}) \supset R(C)$ and $\|(\lambda - A)^{-m}C\| \leq M/(\lambda - a)^m$ for $\lambda > a$ and $m \geq 1$;

(A3) $Cx \in D(A)$ and ACx = CAx for $x \in D(A)$.

Theorem 2. If A satisfies the equivalent conditions of Theorem 1, then the part of A in $\overline{D(A)}$ is the generator of a C_1 -semigroup $\{S_1(t); t \ge 0\}$ on $\overline{D(A)}$ satisfying $||S_1(t)x|| \le Me^{at} ||x||$ for $x \in \overline{D(A)}$ and $t \ge 0$, where $C_1 = C|_{\overline{D(A)}}$.

The above-mentioned Arendt's results are the case of C=I (the identity) in Theorems 1 and 2. As direct consequences of Theorems 1 and 2 we have:

Corollary 1. If A satisfies (A1)–(A3) in Theorem 1 then $C^{-1}AC$ is the generator of an integrated C-semigroup $\{U(t); t \ge 0\}$ on X satisfying $\|U(t+h)-U(t)\| \le Mhe^{a(t+h)}$ for $t, h \ge 0$.

Corollary 2 ([2, Corollary 13.2]). Suppose $\overline{R(C)} = X$. A is the generator of a C-semigroup $\{S(t); t \ge 0\}$ on X satisfying $||S(t)|| \le Me^{at}$ for $t \ge 0$ if and only if A is maximal with respect to (A2), (A3) in Theorem 1 and "(A1') A is a closed linear operator with $\overline{D(A)} = X$ and λ -A is injective for $\lambda > a$ ".

2. Integrated C-semigroups. Let $C \in B(X)$ be injective. A family $\{U(t); t \ge 0\}$ in B(X) is called an *integrated C-semigroup on X*, if

(2.1) $U(\cdot)x: [0, \infty) \rightarrow X$ is continuous for $x \in X$,

(2.2) U(t)x=0 for all t>0 implies x=0,

(2.3) there exist K>0 and $b\geq 0$ such that $||U(t)||\leq Ke^{bt}$ for $t\geq 0$,

(2.4) U(0)=0 (the zero operator) and U(t)C=CU(t) for t>0,