# 7. Parabolic Components of Zeta Functions 

By Nobushige Kurokawa<br>Department of Mathematics, Tokyo Institute of Technology<br>(Communicated by Kunihiko Kodaira, m. J. A., Jan. 12, 1988)

The functional equation for the Riemann zeta function $\zeta(s)$ was discovered by Euler [1] in 1749 in the form $\zeta(1-s)=\Gamma_{c}(s) \cos (\pi s / 2) \zeta(s)$ with $\Gamma_{\boldsymbol{c}}(s)=2(2 \pi)^{-s} \Gamma(s)$. Later, Riemann [2] found the symmetric functional equation: $\Gamma_{R}(s) \zeta(s)=\Gamma_{R}(1-s) \zeta(1-s)$ where $\Gamma_{R}(s)=\pi^{-s / 2} \Gamma(s / 2)$. These two functional equations are equivalent since $\Gamma_{R}(s) \Gamma_{R}(s+1)=\Gamma_{C}(s)$ and $\Gamma_{R}(1+s) \Gamma_{R}(1-s)=(\cos (\pi s / 2))^{-1}$, but as is well-known the Riemann's form has been more suggestive to later developments of arithmetic zeta functions containing the adelic view point, where $\Gamma_{R}(s) \zeta(s)$ is considered as the product of local zeta functions.

The same is true for Selberg zeta functions. Let $M$ be a compact Riemann surface of genus $g \geqq 2$, and $\Gamma=\pi_{1}(M)$ the fundamental group embedded in $\mathrm{PSL}_{2}(\boldsymbol{R})$, so $M=\Gamma \backslash H$ for the upper half plane $H$. The zeta function $Z_{\text {hyp }}(s)$ of $\Gamma$ (or $M$ ) is defined by Selberg [3] as the product over all primitive hyperbolic conjugacy classes of $\Gamma$. The functional equation of Selberg was not symmetric corresponding to Euler. Later, Vignéras [4] as Riemann presented the symmetric functional equation $Z_{\text {id }}(s) Z_{\text {nyp }}(s)=$ $Z_{\text {id }}(1-s) Z_{\text {hyp }}(1-s)$ with the identity factor $Z_{\text {id }}(s)=\Gamma_{2}^{C}(s)^{2 q-2}=\left((2 \pi)^{s} \Gamma_{2}(s)^{2}\right.$ $\left.\Gamma(s)^{-1}\right)^{2 g-2}$ where $\Gamma_{2}(s)$ is the double gamma function of Barnes. Recently, Voros [5] and Sarnak [6] give the determinant expression

$$
Z_{\mathrm{Id}}(s) Z_{\mathrm{hyp}}(s)=\operatorname{det}(\Delta-s(1-s)) \exp ((2 g-2)(C+s(1-s)))
$$

where $\Delta$ is the Laplace operator acting on $L^{2}(M)$ and $C=-1 / 4-(1 / 2) \log (2 \pi)$ $+2 \zeta^{\prime}(-1)$. Letting $s \rightarrow 1$, they reprove

$$
Z_{\mathrm{hyp}}^{\prime}(1)=\operatorname{det}^{\prime}(\Delta) \exp ((2 g-2)(C+\log (2 \pi)))
$$

which was previously shown by string physicists.
We study the case of non-co-compact $\Gamma$ (non-compact $M$ ). The basic case is $\Gamma=\mathrm{PSL}_{2}(Z)$, and hereafter we treat this case since the general feature appears explicitly here. The case of congruence subgroups is quite similar and our method is directly applicable. According to Vignéras [4] we have the symmetric functional equation

$$
Z_{\mathrm{hyp}}(s) Z_{\mathrm{id}}(s) Z_{\mathrm{ell}}(s) Z_{\mathrm{par}}(s)=Z_{\mathrm{hyp}}(1-s) Z_{\mathrm{id}}(1-s) Z_{\mathrm{ell}}(1-s) Z_{\mathrm{par}}(1-s)
$$

with $Z_{\mathrm{id}}(s)=\Gamma_{2}^{C}(s)^{1 / 8}$. Unfortunately $Z_{\text {ell }}(s)$ and $Z_{\mathrm{par}}(s)$ are incompletely (or erroneously) defined in [4]. In the remarkable paper [7], Fischer gives correctly

$$
Z_{\mathrm{ell}}(s)=\Gamma(s / 2)^{-1 / 2} \Gamma((s+1) / 2)^{1 / 2} \Gamma(s / 3)^{-2 / 3} \Gamma((s+2) / 3)^{2 / 3}
$$

and $Z_{\mathrm{par}}(s)$ a bit implicitly ; we refer to Venkov [8] for related calculations. More precisely we have

